It is well known that a second order, pendulum-like, Hamiltonian systems exhibits, under a slowly oscillating periodic forcing, a chaotic behavior. In the paper we prove that also for some special class of rapidly oscillating quasi-periodic forcing such systems have chaotic behavior (more precisely infinitely many multi-bump solutions). The proofs are based on critical point theory.

CHAOTIC BEHAVIOR OF RAPIDLY OSCILLATING LAGRANGIAN SYSTEMS

COTI ZELATI, VITTORIO;
2004

Abstract

It is well known that a second order, pendulum-like, Hamiltonian systems exhibits, under a slowly oscillating periodic forcing, a chaotic behavior. In the paper we prove that also for some special class of rapidly oscillating quasi-periodic forcing such systems have chaotic behavior (more precisely infinitely many multi-bump solutions). The proofs are based on critical point theory.
File in questo prodotto:
File Dimensione Formato  
Alessio_CotiZelati_Montecchiari_2004.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 382 kB
Formato Adobe PDF
382 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/8411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact