Recent progress in quantum field theory and quantum gravity relies on mixed boundary conditions involving both normal and tangential derivatives of the quantized field. In particular, the occurrence of tangential derivatives in the boundary operator makes it possible to build a large number of new local invariants. The integration of linear combinations of such invariants of the orthogonal group yields the boundary contribution to the asymptotic expansion of the integrated heat-kernel. This can be used, in turn, to study the one-loop semiclassical approximation. The coefficients of linear combination are now being computed for the first time. They are universal functions, in that are functions of position on the boundary not affected by conformal rescalings of the background metric, invariant in form and independent of the dimension of the background Riemannian manifold. In Euclidean quantum gravity, the problem arises of studying infinitely many universal functions.
Spectral geometry and quantum gravity / Esposito, G. - (1998), pp. 61-66. ( Second Tomsk International Conference "Quantum Field Theory and Gravity" Tomsk August 1997).
Spectral geometry and quantum gravity
ESPOSITO GPrimo
1998
Abstract
Recent progress in quantum field theory and quantum gravity relies on mixed boundary conditions involving both normal and tangential derivatives of the quantized field. In particular, the occurrence of tangential derivatives in the boundary operator makes it possible to build a large number of new local invariants. The integration of linear combinations of such invariants of the orthogonal group yields the boundary contribution to the asymptotic expansion of the integrated heat-kernel. This can be used, in turn, to study the one-loop semiclassical approximation. The coefficients of linear combination are now being computed for the first time. They are universal functions, in that are functions of position on the boundary not affected by conformal rescalings of the background metric, invariant in form and independent of the dimension of the background Riemannian manifold. In Euclidean quantum gravity, the problem arises of studying infinitely many universal functions.| File | Dimensione | Formato | |
|---|---|---|---|
|
9708128v1.pdf
non disponibili
Dimensione
103.68 kB
Formato
Adobe PDF
|
103.68 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


