We consider an autonomous, second order Hamiltonian system having a saddle-center stationary point whose center manifold is foliated in periodic orbits and we prove existence of infinitely many solutions asymptotic, as time goes to +∞ and -∞ to some of such periodic orbits. The proof is based on critical point theory.

EXISTENCE OF HOMOCLINIC SOLUTIONS TO PERIODIC ORBITS IN A CENTER MANIFOLD

COTI ZELATI, VITTORIO
2004

Abstract

We consider an autonomous, second order Hamiltonian system having a saddle-center stationary point whose center manifold is foliated in periodic orbits and we prove existence of infinitely many solutions asymptotic, as time goes to +∞ and -∞ to some of such periodic orbits. The proof is based on critical point theory.
File in questo prodotto:
File Dimensione Formato  
CotiZelati_Macri_2004.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 313.75 kB
Formato Adobe PDF
313.75 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/8410
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 7
social impact