Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this studyperformeda comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) andCCC(R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived fromFAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas.

Retrieval of evapotranspiration from sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical processor approach / Pasqualotto, Nieves; D'Urso, Guido; FALANGA BOLOGNESI, Salvatore; Belfiore, OSCAR ROSARIO; Van Wittenberghe, Shari; Delegido, Jesús; Pezzola, Alejandro; Cristinawinschel, ; Moreno, José. - In: AGRONOMY. - ISSN 2073-4395. - 9:10(2019). [10.3390/agronomy9100663]

Retrieval of evapotranspiration from sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical processor approach

Guido D’Urso
Secondo
;
Salvatore Falanga Bolognesi;Oscar Rosario Belfiore;
2019

Abstract

Remote sensing evapotranspiration estimation over agricultural areas is increasingly used for irrigation management during the crop growing cycle. Different methodologies based on remote sensing have emerged for the leaf area index (LAI) and the canopy chlorophyll content (CCC) estimation, essential biophysical parameters for crop evapotranspiration monitoring. Using Sentinel-2 (S2) spectral information, this studyperformeda comparative analysis of empirical (vegetation indices), semi-empirical (CLAIR model with fixed and calibrated extinction coefficient) and artificial neural network S2 products derived from the Sentinel Application Platform Software (SNAP) biophysical processor (ANN S2 products) approaches for the estimation of LAI and CCC. Four independent in situ collected datasets of LAI and CCC, obtained with standard instruments (LAI-2000, SPAD) and a smartphone application (PocketLAI), were used. The ANN S2 products present good statistics for LAI (R2 > 0.70, root mean square error (RMSE) < 0.86) andCCC(R2 > 0.75, RMSE < 0.68 g/m2) retrievals. The normalized Sentinel-2 LAI index (SeLI) is the index that presents good statistics in each dataset (R2 > 0.71, RMSE < 0.78) and for the CCC, the ratio red-edge chlorophyll index (CIred-edge) (R2 > 0.67, RMSE < 0.62 g/m2). Both indices use bands located in the red-edge zone, highlighting the importance of this region. The LAI CLAIR model with a fixed extinction coefficient value produces a R2 > 0.63 and a RMSE < 1.47 and calibrating this coefficient for each study area only improves the statistics in two areas (RMSE 0.70). Finally, this study analyzed the influence of the LAI parameter estimated with the different methodologies in the calculation of crop potential evapotranspiration (ETc) with the adapted Penman–Monteith (FAO-56 PM), using a multi-temporal dataset. The results were compared with ETc estimated as the product of the reference evapotranspiration (ETo) and on the crop coefficient (Kc) derived fromFAO table values. In the absence of independent reference ET data, the estimated ETc with the LAI in situ values were considered as the proxy of the ground-truth. ETc estimated with the ANN S2 LAI product is the closest to the ETc values calculated with the LAI in situ (R2 > 0.90, RMSE < 0.41 mm/d). Our findings indicate the good validation of ANN S2 LAI and CCC products and their further suitability for the implementation in evapotranspiration retrieval of agricultural areas.
2019
Retrieval of evapotranspiration from sentinel-2: Comparison of vegetation indices, semi-empirical models and SNAP biophysical processor approach / Pasqualotto, Nieves; D'Urso, Guido; FALANGA BOLOGNESI, Salvatore; Belfiore, OSCAR ROSARIO; Van Wittenberghe, Shari; Delegido, Jesús; Pezzola, Alejandro; Cristinawinschel, ; Moreno, José. - In: AGRONOMY. - ISSN 2073-4395. - 9:10(2019). [10.3390/agronomy9100663]
File in questo prodotto:
File Dimensione Formato  
agronomy-09-00663.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 2.34 MB
Formato Adobe PDF
2.34 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/838183
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 28
social impact