In the last dozen years, a wide and variegated mass of observational data revealed that the universe is now expanding at an accelerated rate. In the absence of a well-based theory to interpret the observations, cosmography provides information about the evolution of the universe from measured distances, only assuming that the geometry can be described by the Friedmann-Lemaitre-Robertson-Walker metric. In this paper, we perform a high-redshift analysis which allows us to put constraints on the cosmographic parameters up to the fifth-order, thus inducing indirect constraints on any gravity theory. Here, we are interested in the so-called teleparallel gravity theory, f(T). Actually, we use the analytical expressions of the present day values of f(T) and its derivatives as functions of the cosmographic parameters to map the cosmography region of confidences into confidence ranges for f(T) and its derivative. Moreover, we show how these can be used to test some teleparallel gravity models without solving the dynamical equations. Our analysis is based on the Union2 Type Ia supernovae (SNIa) data set, a set of 28 measurements of the Hubble parameter, the Hubble diagram constructed from some gamma ray bursts (GRB) luminosity distance indicators and Gaussian priors on the distance from the baryon acoustic oscillations (BAOs) and the Hubble constant h. To perform our statistical analysis and to explore the probability distributions of the cosmographic parameters, we use the Markov chain Monte Carlo (MCMC) method. © World Scientific Publishing Company.

Updated f(T) gravity constraints from high-redshift cosmography / Piedipalumbo, Ester. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS D. - ISSN 0218-2718. - 24:14(2015). [10.1142/S021827181550100X]

Updated f(T) gravity constraints from high-redshift cosmography

Piedipalumbo
Primo
Conceptualization
2015

Abstract

In the last dozen years, a wide and variegated mass of observational data revealed that the universe is now expanding at an accelerated rate. In the absence of a well-based theory to interpret the observations, cosmography provides information about the evolution of the universe from measured distances, only assuming that the geometry can be described by the Friedmann-Lemaitre-Robertson-Walker metric. In this paper, we perform a high-redshift analysis which allows us to put constraints on the cosmographic parameters up to the fifth-order, thus inducing indirect constraints on any gravity theory. Here, we are interested in the so-called teleparallel gravity theory, f(T). Actually, we use the analytical expressions of the present day values of f(T) and its derivatives as functions of the cosmographic parameters to map the cosmography region of confidences into confidence ranges for f(T) and its derivative. Moreover, we show how these can be used to test some teleparallel gravity models without solving the dynamical equations. Our analysis is based on the Union2 Type Ia supernovae (SNIa) data set, a set of 28 measurements of the Hubble parameter, the Hubble diagram constructed from some gamma ray bursts (GRB) luminosity distance indicators and Gaussian priors on the distance from the baryon acoustic oscillations (BAOs) and the Hubble constant h. To perform our statistical analysis and to explore the probability distributions of the cosmographic parameters, we use the Markov chain Monte Carlo (MCMC) method. © World Scientific Publishing Company.
2015
Updated f(T) gravity constraints from high-redshift cosmography / Piedipalumbo, Ester. - In: INTERNATIONAL JOURNAL OF MODERN PHYSICS D. - ISSN 0218-2718. - 24:14(2015). [10.1142/S021827181550100X]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/837719
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? ND
social impact