Objectives: Juvenile myoclonic epilepsy (JME) is a genetic generalized epilepsy marked by cortical hyperexcitability. Recent neuroimaging data suggested also a thalamic role in sustaining epileptic propensity in JME. However, thalamic hyperexcitability was not demonstrated so far. Low-frequency (LF-SEPs) and high-frequency somatosensory evoked potentials (HF-SEPs) are very sensitive to thalamic (early HF-SEPs burst, eHFO) and cortical (late HF-SEPs burst, lHFO) excitability. The aim of our experiment was to explore and discern the role of thalamic and cortical excitability in epileptic susceptibility of JME through a LF-SEPs and HF-SEPs study. Methods: Twenty-three subjects with JME (11 females, 30.2 ± 9.8-year-old) and 23 healthy control subjects (12 females, age: 34.7 ± 7.7-year-old) underwent right median LF-SEPs scalp recordings. Cp3′-Fz traces were filtered (400–800 Hz) to reveal HF-SEPs. All JME patients were on drug treatment and seizure free, except for sporadic myoclonus. Results: N20 LF-SEPs amplitude (p < 0.009), areas of totHFO, eHFO and lHFO (all p < 0.005) and totHFO duration (p = 0.013) were increased in JME respect to healthy subjects. totHFO area was negatively correlated with the number of antiepileptic drugs (rho = -0.505, sig.: 0.027), while eHFO area was positively correlated with the myoclonus frequency (rho = 0.555, sig = 0.014). Conclusions: We demonstrated that in JME the thalamic hyperexcitability assists the cortical one in sustaining epileptic susceptibility. Significance: Our results support the concept of JME as a network and genetic disorder.

Thalamic and cortical hyperexcitability in juvenile myoclonic epilepsy / Assenza, G.; Lanzone, J.; Dubbioso, R.; Coppola, A.; Boscarino, M.; Ricci, L.; Insola, A.; Bilo, L.; Tombini, M.; Di Lazzaro, V.. - In: CLINICAL NEUROPHYSIOLOGY. - ISSN 1388-2457. - 131:8(2020), pp. 2041-2046. [10.1016/j.clinph.2020.04.164]

Thalamic and cortical hyperexcitability in juvenile myoclonic epilepsy

Dubbioso R.;Coppola A.;Ricci L.;Bilo L.;
2020

Abstract

Objectives: Juvenile myoclonic epilepsy (JME) is a genetic generalized epilepsy marked by cortical hyperexcitability. Recent neuroimaging data suggested also a thalamic role in sustaining epileptic propensity in JME. However, thalamic hyperexcitability was not demonstrated so far. Low-frequency (LF-SEPs) and high-frequency somatosensory evoked potentials (HF-SEPs) are very sensitive to thalamic (early HF-SEPs burst, eHFO) and cortical (late HF-SEPs burst, lHFO) excitability. The aim of our experiment was to explore and discern the role of thalamic and cortical excitability in epileptic susceptibility of JME through a LF-SEPs and HF-SEPs study. Methods: Twenty-three subjects with JME (11 females, 30.2 ± 9.8-year-old) and 23 healthy control subjects (12 females, age: 34.7 ± 7.7-year-old) underwent right median LF-SEPs scalp recordings. Cp3′-Fz traces were filtered (400–800 Hz) to reveal HF-SEPs. All JME patients were on drug treatment and seizure free, except for sporadic myoclonus. Results: N20 LF-SEPs amplitude (p < 0.009), areas of totHFO, eHFO and lHFO (all p < 0.005) and totHFO duration (p = 0.013) were increased in JME respect to healthy subjects. totHFO area was negatively correlated with the number of antiepileptic drugs (rho = -0.505, sig.: 0.027), while eHFO area was positively correlated with the myoclonus frequency (rho = 0.555, sig = 0.014). Conclusions: We demonstrated that in JME the thalamic hyperexcitability assists the cortical one in sustaining epileptic susceptibility. Significance: Our results support the concept of JME as a network and genetic disorder.
2020
Thalamic and cortical hyperexcitability in juvenile myoclonic epilepsy / Assenza, G.; Lanzone, J.; Dubbioso, R.; Coppola, A.; Boscarino, M.; Ricci, L.; Insola, A.; Bilo, L.; Tombini, M.; Di Lazzaro, V.. - In: CLINICAL NEUROPHYSIOLOGY. - ISSN 1388-2457. - 131:8(2020), pp. 2041-2046. [10.1016/j.clinph.2020.04.164]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/830325
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 17
social impact