Resistance can be the result of secondary tissue variants (STVs), which restore the open reading frame of the germline BRCA allele, producing functional BRCA protein in germline BRCA1/2 (BRCA) pathogenic variant (PV) carriers, treated with platinum-based chemotherapy or poly-(ADP-ribose) polymerase inhibitors (PARP-1). We reported recently a BRCA2 mutant high grade serous ovarian cancer (HGSOC) patient with acquired resistance to the PARP-1 olaparib due to a STV detected by next generation tumor sequencing (NGTS). The aim of this study was to evaluate the versatility of the high-resolution melting analysis (HRMA) obtained by magnetic induction cycler (MIC) to monitor the BRCA2 status in formalin-fixed paraffin-embedded (FFPE) tissue samples of this patient and to compare the results obtained by NGTS. HRMA highlighted the BRCA2 STV previously detected in the IIIrd HGSOC recurrence following the tissue BRCA2 tissue status comparing the high resolution melting profiles (HRMPs). HRMPs differentiate not only BRCA2 alleles, but also their different allele abundance. We underline that (1) the MIC uses a latest generation technology guaranteeing temperature uniformity and maintenance in each well allowing high and accurate performance to obtain reported results and (2) the HRMA maintains a high sensitivity and specificity when it is performed on FFPE samples. Finally, this study represents an additional use of the HRMA, confirming its extreme versatility in the diagnostic environment.

High resolution melting profiles (HRMPs) obtained by magnetic induction cycler (MIC) have been used to monitor the BRCA2 status highlighted by next generation tumor sequencing (NGTS): a combined approach in a diagnostic environment / Mazzuccato, G.; De Bonis, M.; Carboni, V.; Marchetti, C.; Urbani, A.; Scambia, G.; Capoluongo, E.; Fagotti, A.; Minucci, A.. - In: MOLECULAR BIOLOGY REPORTS. - ISSN 0301-4851. - 47:6(2020), pp. 4897-4903. [10.1007/s11033-020-05504-5]

High resolution melting profiles (HRMPs) obtained by magnetic induction cycler (MIC) have been used to monitor the BRCA2 status highlighted by next generation tumor sequencing (NGTS): a combined approach in a diagnostic environment

Capoluongo E.;
2020

Abstract

Resistance can be the result of secondary tissue variants (STVs), which restore the open reading frame of the germline BRCA allele, producing functional BRCA protein in germline BRCA1/2 (BRCA) pathogenic variant (PV) carriers, treated with platinum-based chemotherapy or poly-(ADP-ribose) polymerase inhibitors (PARP-1). We reported recently a BRCA2 mutant high grade serous ovarian cancer (HGSOC) patient with acquired resistance to the PARP-1 olaparib due to a STV detected by next generation tumor sequencing (NGTS). The aim of this study was to evaluate the versatility of the high-resolution melting analysis (HRMA) obtained by magnetic induction cycler (MIC) to monitor the BRCA2 status in formalin-fixed paraffin-embedded (FFPE) tissue samples of this patient and to compare the results obtained by NGTS. HRMA highlighted the BRCA2 STV previously detected in the IIIrd HGSOC recurrence following the tissue BRCA2 tissue status comparing the high resolution melting profiles (HRMPs). HRMPs differentiate not only BRCA2 alleles, but also their different allele abundance. We underline that (1) the MIC uses a latest generation technology guaranteeing temperature uniformity and maintenance in each well allowing high and accurate performance to obtain reported results and (2) the HRMA maintains a high sensitivity and specificity when it is performed on FFPE samples. Finally, this study represents an additional use of the HRMA, confirming its extreme versatility in the diagnostic environment.
2020
High resolution melting profiles (HRMPs) obtained by magnetic induction cycler (MIC) have been used to monitor the BRCA2 status highlighted by next generation tumor sequencing (NGTS): a combined approach in a diagnostic environment / Mazzuccato, G.; De Bonis, M.; Carboni, V.; Marchetti, C.; Urbani, A.; Scambia, G.; Capoluongo, E.; Fagotti, A.; Minucci, A.. - In: MOLECULAR BIOLOGY REPORTS. - ISSN 0301-4851. - 47:6(2020), pp. 4897-4903. [10.1007/s11033-020-05504-5]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/829906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact