Unlike vagile organisms, plants perform a wide range of phenotypic responses to cope with environmental stresses. A special case of interaction with external factors is the ability of plants to recognize genetic relatedness of neighbour plants, actually well known as kin recognition. The present work aimed to provide a valuable contribution to the field of kin recognition in plants through a common garden experiment. To avoid bias involved in pot experiments, we perform an experiment in unconstrained root growth conditions comparing the development of coupled kin, non-kin and solitary plants of Xanthium italicum. Biometrics of plants with different genetic relatedness were measured, then architecture and competitive interaction were assessed using the relative interaction index (RII) for above and belowground portions of plants. X. italicum showed different allocation depending on the neighbourhood. Root biomass was declined in plants growing with kin compared to non-kin coupled plants, while plants coupled with kin allocated more shoot than roots compared to solitary plants. RII explains phenotypic response of decreased competition in roots rather than in shoots. Despite high values of RII for the aboveground portion, the architectural analysis of shoot, number, angle and length of branches and roots reveals dramatic but indistinctive change in the structure of plants growing near kin or non kin compared to a solitary plant. These results confirm phenotypic responses of kin recognition in unconstrained environment.

Does a plant detect its neighbor if it is kin or stranger? Evidence from a common garden experiment / Abd El-Gawad, A. M.; Zotti, M.; Sarker, T. C.; Mazzoleni, S.; Bonanomi, G.. - In: COMMUNITY ECOLOGY. - ISSN 1585-8553. - 18:3(2017), pp. 305-310. [10.1556/168.2017.18.3.9]

Does a plant detect its neighbor if it is kin or stranger? Evidence from a common garden experiment

Zotti M.;Sarker T. C.;Bonanomi G.
2017

Abstract

Unlike vagile organisms, plants perform a wide range of phenotypic responses to cope with environmental stresses. A special case of interaction with external factors is the ability of plants to recognize genetic relatedness of neighbour plants, actually well known as kin recognition. The present work aimed to provide a valuable contribution to the field of kin recognition in plants through a common garden experiment. To avoid bias involved in pot experiments, we perform an experiment in unconstrained root growth conditions comparing the development of coupled kin, non-kin and solitary plants of Xanthium italicum. Biometrics of plants with different genetic relatedness were measured, then architecture and competitive interaction were assessed using the relative interaction index (RII) for above and belowground portions of plants. X. italicum showed different allocation depending on the neighbourhood. Root biomass was declined in plants growing with kin compared to non-kin coupled plants, while plants coupled with kin allocated more shoot than roots compared to solitary plants. RII explains phenotypic response of decreased competition in roots rather than in shoots. Despite high values of RII for the aboveground portion, the architectural analysis of shoot, number, angle and length of branches and roots reveals dramatic but indistinctive change in the structure of plants growing near kin or non kin compared to a solitary plant. These results confirm phenotypic responses of kin recognition in unconstrained environment.
2017
Does a plant detect its neighbor if it is kin or stranger? Evidence from a common garden experiment / Abd El-Gawad, A. M.; Zotti, M.; Sarker, T. C.; Mazzoleni, S.; Bonanomi, G.. - In: COMMUNITY ECOLOGY. - ISSN 1585-8553. - 18:3(2017), pp. 305-310. [10.1556/168.2017.18.3.9]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/821400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact