The performance of seven cardiovascular (CV) risk algorithms is evaluated in a multicentric cohort of ankylosing spondylitis (AS) patients. Performance and calibration of traditional CV predictors have been compared with the novel paradigm of machine learning (ML).

Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment / Navarini, Luca; Caso, Francesco; Costa, Luisa; Currado, Damiano; Stola, Liliana; Perrotta, Fabio; Delfino, Lorenzo; Sperti, Michela; Deriu, Marco A; Ruscitti, Piero; Pavlych, Viktoriya; Corrado, Addolorata; Di Benedetto, Giacomo; Tasso, Marco; Ciccozzi, Massimo; Laudisio, Alice; Lunardi, Claudio; Cantatore, Francesco Paolo; Lubrano, Ennio; Giacomelli, Roberto; Scarpa, Raffaele; Afeltra, Antonella. - In: RHEUMATOLOGY AND THERAPY. - ISSN 2198-6584. - 7:4(2020), pp. 867-882. [10.1007/s40744-020-00233-4]

Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment

Caso, Francesco;Costa, Luisa;Tasso, Marco;Scarpa, Raffaele;
2020

Abstract

The performance of seven cardiovascular (CV) risk algorithms is evaluated in a multicentric cohort of ankylosing spondylitis (AS) patients. Performance and calibration of traditional CV predictors have been compared with the novel paradigm of machine learning (ML).
2020
Cardiovascular Risk Prediction in Ankylosing Spondylitis: From Traditional Scores to Machine Learning Assessment / Navarini, Luca; Caso, Francesco; Costa, Luisa; Currado, Damiano; Stola, Liliana; Perrotta, Fabio; Delfino, Lorenzo; Sperti, Michela; Deriu, Marco A; Ruscitti, Piero; Pavlych, Viktoriya; Corrado, Addolorata; Di Benedetto, Giacomo; Tasso, Marco; Ciccozzi, Massimo; Laudisio, Alice; Lunardi, Claudio; Cantatore, Francesco Paolo; Lubrano, Ennio; Giacomelli, Roberto; Scarpa, Raffaele; Afeltra, Antonella. - In: RHEUMATOLOGY AND THERAPY. - ISSN 2198-6584. - 7:4(2020), pp. 867-882. [10.1007/s40744-020-00233-4]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/821279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 25
social impact