This baseline study on fracture populations affecting the Mesozoic sedimentary succession of central Spitsbergen (Svalbard) has been performed to characterize the reservoir-caprock system explored for potential subsurface CO2 storage by the Longyearbyen CO2 Lab project. Integrating structural and stratigraphie analyses of outcrop and borehole data, we identified recurrent litho-structural and structural units (LSUs and SUs, respectively) on the basis of their fracture associations, lithologies and dominant sedimentary facies. A principal fracture settrending approximately E-W (J1) and a subordinate fracture set trending approximately N-S (J2) have been recognized. Subordinate systems of shear fractures (SI) trending roughly NE-SW and NW-SE, and a secondary low-angle, fracture set (S2) striking E-W to NW-SE have been observed. Their origin is interpreted as related to the far-field stress of the Paleogene West Spitsbergen fold-and-thrust Belt. The identified units are thought to influence the local hydrogeologic regime due to the intrinsic variations in the matrix and fracture network properties. The architecture of the reservoir-caprock succession is segmented, with the vertical alternation of intervals characterized by 1) fracture porosity and permeability, 2) microfracturing- related matrix porosity, and 3) preferential subsurface fluid flow pathways. Copyright © (2014) by the European Association of Geoscientists & Engineers. All rights reserved.

Structural characterization of the Longyearbyen CO2 Lab reservoir-caprock succession / Ogata, K.; Senger, K.; Braathen, A.; Olaussen, S.; Tveranger, J.. - (2014), pp. 231-235. ( 4th EAGE CO2 Geological Storage Workshop 2014: Demonstrating Storage Integrity and Building Confidence in CCS Stavanger, nor 2014) [10.3997/2214-4609.20140116].

Structural characterization of the Longyearbyen CO2 Lab reservoir-caprock succession

Ogata K.
;
2014

Abstract

This baseline study on fracture populations affecting the Mesozoic sedimentary succession of central Spitsbergen (Svalbard) has been performed to characterize the reservoir-caprock system explored for potential subsurface CO2 storage by the Longyearbyen CO2 Lab project. Integrating structural and stratigraphie analyses of outcrop and borehole data, we identified recurrent litho-structural and structural units (LSUs and SUs, respectively) on the basis of their fracture associations, lithologies and dominant sedimentary facies. A principal fracture settrending approximately E-W (J1) and a subordinate fracture set trending approximately N-S (J2) have been recognized. Subordinate systems of shear fractures (SI) trending roughly NE-SW and NW-SE, and a secondary low-angle, fracture set (S2) striking E-W to NW-SE have been observed. Their origin is interpreted as related to the far-field stress of the Paleogene West Spitsbergen fold-and-thrust Belt. The identified units are thought to influence the local hydrogeologic regime due to the intrinsic variations in the matrix and fracture network properties. The architecture of the reservoir-caprock succession is segmented, with the vertical alternation of intervals characterized by 1) fracture porosity and permeability, 2) microfracturing- related matrix porosity, and 3) preferential subsurface fluid flow pathways. Copyright © (2014) by the European Association of Geoscientists & Engineers. All rights reserved.
2014
978-90-73834-79-8
Structural characterization of the Longyearbyen CO2 Lab reservoir-caprock succession / Ogata, K.; Senger, K.; Braathen, A.; Olaussen, S.; Tveranger, J.. - (2014), pp. 231-235. ( 4th EAGE CO2 Geological Storage Workshop 2014: Demonstrating Storage Integrity and Building Confidence in CCS Stavanger, nor 2014) [10.3997/2214-4609.20140116].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/820211
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact