A circular caterpillar of girth n is a graph such that the removal of all pendant vertices yields a cycle Cn of order n. A signed graph is a pair Γ = (G, σ), where G is a simple graph and σ ∶ E(G) → {+1, −1} is the sign function defined on the set E(G) of edges of G. The signed graph Γ is said to be balanced if the number of negatively signed edges in each cycle is even, and it is said to be unbalanced otherwise. We determine some bounds for the first n Laplacian eigenvalues of any signed circular caterpillar. As an application, we prove that each signed spiked triangle (G(3; p, q, r), σ), i. e. a signed circular caterpillar of girth 3 and degree sequence πp,q,r = (p + 2, q + 2, r + 2, 1,..., 1), is determined by its Laplacian spectrum up to switching isomorphism. Moreover, in the set of signed spiked triangles of order N, we identify the extremal graphs with respect to the Laplacian spectral radius and the first two Zagreb indices. It turns out that the unbalanced spiked triangle with degree sequence πN−3,0,0 and the balanced spike triangle (G(3; p, ^ q, ^ r^), +), where each pair in {p, ^ q, ^ r^} differs at most by 1, respectively maximizes and minimizes the Laplacian spectral radius and both the Zagreb indices.

Laplacian spectral properties of signed circular caterpillars / Brunetti, M. - In: THEORY AND APPLICATIONS OF GRAPHS. - ISSN 2470-9859. - 7:2(2020). [10.20429/TAG.2020.070201]

Laplacian spectral properties of signed circular caterpillars

Brunetti, M
2020

Abstract

A circular caterpillar of girth n is a graph such that the removal of all pendant vertices yields a cycle Cn of order n. A signed graph is a pair Γ = (G, σ), where G is a simple graph and σ ∶ E(G) → {+1, −1} is the sign function defined on the set E(G) of edges of G. The signed graph Γ is said to be balanced if the number of negatively signed edges in each cycle is even, and it is said to be unbalanced otherwise. We determine some bounds for the first n Laplacian eigenvalues of any signed circular caterpillar. As an application, we prove that each signed spiked triangle (G(3; p, q, r), σ), i. e. a signed circular caterpillar of girth 3 and degree sequence πp,q,r = (p + 2, q + 2, r + 2, 1,..., 1), is determined by its Laplacian spectrum up to switching isomorphism. Moreover, in the set of signed spiked triangles of order N, we identify the extremal graphs with respect to the Laplacian spectral radius and the first two Zagreb indices. It turns out that the unbalanced spiked triangle with degree sequence πN−3,0,0 and the balanced spike triangle (G(3; p, ^ q, ^ r^), +), where each pair in {p, ^ q, ^ r^} differs at most by 1, respectively maximizes and minimizes the Laplacian spectral radius and both the Zagreb indices.
2020
Laplacian spectral properties of signed circular caterpillars / Brunetti, M. - In: THEORY AND APPLICATIONS OF GRAPHS. - ISSN 2470-9859. - 7:2(2020). [10.20429/TAG.2020.070201]
File in questo prodotto:
File Dimensione Formato  
Laplacian Spectral Properties of Signed Circular Caterpillars_published.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 582.83 kB
Formato Adobe PDF
582.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/817853
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact