Coronaviruses have received global concern since 2003, when an outbreak caused by SARS‐CoV emerged in China. Later on, in 2012, the Middle‐East respiratory syndrome spread in Saudi Arabia, caused by MERS‐CoV. Currently, the global crisis is caused by the pandemic SARS‐ CoV‐2, which belongs to the same lineage of SARS‐CoV. In response to the urgent need of diagnostic tools, several lab‐based and biosensing techniques have been proposed so far. Five main areas have been individuated and discussed in terms of their strengths and weaknesses. The cell‐culture detection and the microneutralization tests are still considered highly reliable methods. The genetic screening, featuring the well‐established Real‐time polymerase chain reaction (RT‐PCR), represents the gold standard for virus detection in nasopharyngeal swabs. On the other side, immunoassays were developed, either by screening/antigen recognition of IgM/IgG or by detecting the whole virus, in blood and sera. Next, proteomic mass‐spectrometry (MS)‐based methodologies have also been proposed for the analysis of swab samples. Finally, virus-biosensing devices were efficiently designed. Both electrochemical immunosensors and eye‐based technologies have been described, showing detection times lower than 10 min after swab introduction. Alternative to swab‐based techniques, lateral flow point‐of‐care immunoassays are already commercially available for the analysis of blood samples. Such biosensing devices hold the advantage of being portable for on‐site testing in hospitals, airports, and hotspots, virtually without any sample treatment or complicated lab precautions.
Point-of-care diagnostics of covid-19: From current work to future perspectives / Hussein, H. A.; Hassan, R. Y. A.; Chino, M.; Febbraio, F.. - In: SENSORS. - ISSN 1424-8220. - 20:15(2020), pp. 1-28. [10.3390/s20154289]
Point-of-care diagnostics of covid-19: From current work to future perspectives
Chino M.Penultimo
;
2020
Abstract
Coronaviruses have received global concern since 2003, when an outbreak caused by SARS‐CoV emerged in China. Later on, in 2012, the Middle‐East respiratory syndrome spread in Saudi Arabia, caused by MERS‐CoV. Currently, the global crisis is caused by the pandemic SARS‐ CoV‐2, which belongs to the same lineage of SARS‐CoV. In response to the urgent need of diagnostic tools, several lab‐based and biosensing techniques have been proposed so far. Five main areas have been individuated and discussed in terms of their strengths and weaknesses. The cell‐culture detection and the microneutralization tests are still considered highly reliable methods. The genetic screening, featuring the well‐established Real‐time polymerase chain reaction (RT‐PCR), represents the gold standard for virus detection in nasopharyngeal swabs. On the other side, immunoassays were developed, either by screening/antigen recognition of IgM/IgG or by detecting the whole virus, in blood and sera. Next, proteomic mass‐spectrometry (MS)‐based methodologies have also been proposed for the analysis of swab samples. Finally, virus-biosensing devices were efficiently designed. Both electrochemical immunosensors and eye‐based technologies have been described, showing detection times lower than 10 min after swab introduction. Alternative to swab‐based techniques, lateral flow point‐of‐care immunoassays are already commercially available for the analysis of blood samples. Such biosensing devices hold the advantage of being portable for on‐site testing in hospitals, airports, and hotspots, virtually without any sample treatment or complicated lab precautions.File | Dimensione | Formato | |
---|---|---|---|
Hussein et al. - 2020 - Point-of-Care Diagnostics of COVID-19 From Curren.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
5.07 MB
Formato
Adobe PDF
|
5.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.