Chymotrypsinogen, when reduced and taken to its molten globule-like conformation, displays a single cysteine with an unusual kinetic propensity toward oxidized glutathione (GSSG) and other organic thiol reagents. A single residue, identified by mass spectrometry like Cys1, reacts with GSSG about 1400 times faster than an unperturbed protein cysteine. A reversible protein-GSSG complex and a low pKa (8.1 ± 0.1) make possible such astonishing kinetic property which is absent toward other natural disulfides like cystine, homocystine and cystamine. An evident hyper-reactivity toward 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and 1-chloro-2,4-dinitrobenzene (CDNB) was also found for this specific residue. The extraordinary reactivity toward GSSG is absent in two proteins of the thermophilic archaeon Sulfolobus solfataricus, an organism lacking glutathione: the Protein Disulphide Oxidoreductase (SsPDO) and the Bacterioferritin Comigratory Protein 1 (Bcp1) that displays Cys residues with an even lower pKa value (7.5 ± 0.1) compared to chymotrypsinogen. This study, which also uses single mutants in Cys residues for Bcp1, proposes that this hyper-reactivity of a single cysteine, similar to that found in serum albumin, lysozyme, ribonuclease, may have relevance to drive the "incipit" of the oxidative folding of proteins from organisms where the glutathione/oxidized glutathione (GSH/GSSG) system is present.

Ultra-rapid Glutathionylation of Chymotrypsinogen in Its Molten Globule-Like Conformation: A Comparison to Archaeal Proteins / Bocedi, Alessio; Giadacattani, Giorgiagambardella; Bartolucci, Simonetta; Limauro, Danila; Pedone, Emilia; Iavarone, Federica; &, Massimocastagnola; Ricci, Giorgio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 10:1(2020), p. 8943. [10.1038/s41598-020-65696-5]

Ultra-rapid Glutathionylation of Chymotrypsinogen in Its Molten Globule-Like Conformation: A Comparison to Archaeal Proteins

Simonetta Bartolucci;Danila Limauro
Secondo
;
2020

Abstract

Chymotrypsinogen, when reduced and taken to its molten globule-like conformation, displays a single cysteine with an unusual kinetic propensity toward oxidized glutathione (GSSG) and other organic thiol reagents. A single residue, identified by mass spectrometry like Cys1, reacts with GSSG about 1400 times faster than an unperturbed protein cysteine. A reversible protein-GSSG complex and a low pKa (8.1 ± 0.1) make possible such astonishing kinetic property which is absent toward other natural disulfides like cystine, homocystine and cystamine. An evident hyper-reactivity toward 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and 1-chloro-2,4-dinitrobenzene (CDNB) was also found for this specific residue. The extraordinary reactivity toward GSSG is absent in two proteins of the thermophilic archaeon Sulfolobus solfataricus, an organism lacking glutathione: the Protein Disulphide Oxidoreductase (SsPDO) and the Bacterioferritin Comigratory Protein 1 (Bcp1) that displays Cys residues with an even lower pKa value (7.5 ± 0.1) compared to chymotrypsinogen. This study, which also uses single mutants in Cys residues for Bcp1, proposes that this hyper-reactivity of a single cysteine, similar to that found in serum albumin, lysozyme, ribonuclease, may have relevance to drive the "incipit" of the oxidative folding of proteins from organisms where the glutathione/oxidized glutathione (GSH/GSSG) system is present.
2020
Ultra-rapid Glutathionylation of Chymotrypsinogen in Its Molten Globule-Like Conformation: A Comparison to Archaeal Proteins / Bocedi, Alessio; Giadacattani, Giorgiagambardella; Bartolucci, Simonetta; Limauro, Danila; Pedone, Emilia; Iavarone, Federica; &, Massimocastagnola; Ricci, Giorgio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 10:1(2020), p. 8943. [10.1038/s41598-020-65696-5]
File in questo prodotto:
File Dimensione Formato  
Bocedi et al 2020 Scientific Reports.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 2.86 MB
Formato Adobe PDF
2.86 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/808340
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact