Like several neurodegenerative disorders, such as Prion and Parkinson diseases, Alzheimer’s disease (AD) is characterized by spreading mechanism of aggregated proteins in the brain in a typical “prion-like” manner. Recent genetic studies have identified in four genes associated with inherited AD (amyloid precursor protein-APP, Presenilin-1, Presenilin-2 and Apolipoprotein E), rare mutations which cause dysregulation of APP processing and alterations of folding of the derived amyloid beta peptide (Aβ). Accumulation and aggregation of Aβ in the brain can trigger a series of intracellular events, including hyperphosphorylation of tau protein, leading to the pathological features of AD. However, mutations in these four genes account for a small of the total genetic risk for familial AD (FAD). Genome-wide association studies have recently led to the identification of additional AD candidate genes. Here, we review an update of well-established, highly penetrant FAD-causing genes with correlation to the protein misfolding pathway, and novel emerging candidate FAD genes, as well as inherited risk factors. Knowledge of these genes and of their correlated biochemical cascade will provide several potential targets for treatment of AD and aging-related disorders

New Insights into the Molecular Bases of Familial Alzheimer's Disease / D'Argenio, Valeria; Sarnataro, Daniela. - In: JOURNAL OF PERSONALIZED MEDICINE. - ISSN 2075-4426. - 10:2(2020). [10.3390/jpm10020026]

New Insights into the Molecular Bases of Familial Alzheimer's Disease

D'Argenio Valeria;Sarnataro Daniela
2020

Abstract

Like several neurodegenerative disorders, such as Prion and Parkinson diseases, Alzheimer’s disease (AD) is characterized by spreading mechanism of aggregated proteins in the brain in a typical “prion-like” manner. Recent genetic studies have identified in four genes associated with inherited AD (amyloid precursor protein-APP, Presenilin-1, Presenilin-2 and Apolipoprotein E), rare mutations which cause dysregulation of APP processing and alterations of folding of the derived amyloid beta peptide (Aβ). Accumulation and aggregation of Aβ in the brain can trigger a series of intracellular events, including hyperphosphorylation of tau protein, leading to the pathological features of AD. However, mutations in these four genes account for a small of the total genetic risk for familial AD (FAD). Genome-wide association studies have recently led to the identification of additional AD candidate genes. Here, we review an update of well-established, highly penetrant FAD-causing genes with correlation to the protein misfolding pathway, and novel emerging candidate FAD genes, as well as inherited risk factors. Knowledge of these genes and of their correlated biochemical cascade will provide several potential targets for treatment of AD and aging-related disorders
2020
New Insights into the Molecular Bases of Familial Alzheimer's Disease / D'Argenio, Valeria; Sarnataro, Daniela. - In: JOURNAL OF PERSONALIZED MEDICINE. - ISSN 2075-4426. - 10:2(2020). [10.3390/jpm10020026]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/807646
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact