To fight oxidative damage due to reactive oxygen species (ROS), cells are equipped of different enzymes, among which Peroxiredoxins (Prxs) (EC 1.11.1.15) play a key role. Prxs are thiol-based enzymes containing one (1-Cys Prx) or two (2-Cys Prx) catalytic cysteine residues. In 2-Cys Prxs the cysteine residues form a disulfide bridge following reduction of peroxide which is in turn reduced by Thioredoxin reductase (Tr) /Thioredoxin (Trx) disulfide reducing system to regenerate the enzyme. In this paper we investigated on Prxs of Thermus thermophilus whose genome contains an ORF TT_C0933 encoding a putative Prx, belonging to the subfamily of Bacterioferritin comigratory protein (Bcp): the synthetic gene was produced and expressed in E. coli and the recombinant protein, TtBcp, was biochemically characterized. TtBcp was active on both organic and inorganic peroxides and showed stability at high temperatures. To get insight into disulfide reducing system involved in the recycling of the enzyme we showed that TtBcp catalically eliminates hydrogen peroxide using an unusual partner, the Protein Disulfide Oxidoreductase (TtPDO) that could replace regeneration of the enzyme. Altogether these results highlight not only a new anti-oxidative pathway but also a promising molecule for possible future biotechnological applications.
A peroxiredoxin of Thermus thermophilus HB27: Biochemical characterization of a new player in the antioxidant defence / Fiorentino, G; Contursi, P.; Gallo, G.; Bartolucci, S.; Limauro, D.. - In: INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. - ISSN 0141-8130. - 153:(2020), pp. 608-615. [10.1016/j.ijbiomac.2020.03.052]
A peroxiredoxin of Thermus thermophilus HB27: Biochemical characterization of a new player in the antioxidant defence.
Fiorentino GPrimo
;Contursi P.Secondo
;Gallo G.;Bartolucci S.;Limauro D.
Ultimo
2020
Abstract
To fight oxidative damage due to reactive oxygen species (ROS), cells are equipped of different enzymes, among which Peroxiredoxins (Prxs) (EC 1.11.1.15) play a key role. Prxs are thiol-based enzymes containing one (1-Cys Prx) or two (2-Cys Prx) catalytic cysteine residues. In 2-Cys Prxs the cysteine residues form a disulfide bridge following reduction of peroxide which is in turn reduced by Thioredoxin reductase (Tr) /Thioredoxin (Trx) disulfide reducing system to regenerate the enzyme. In this paper we investigated on Prxs of Thermus thermophilus whose genome contains an ORF TT_C0933 encoding a putative Prx, belonging to the subfamily of Bacterioferritin comigratory protein (Bcp): the synthetic gene was produced and expressed in E. coli and the recombinant protein, TtBcp, was biochemically characterized. TtBcp was active on both organic and inorganic peroxides and showed stability at high temperatures. To get insight into disulfide reducing system involved in the recycling of the enzyme we showed that TtBcp catalically eliminates hydrogen peroxide using an unusual partner, the Protein Disulfide Oxidoreductase (TtPDO) that could replace regeneration of the enzyme. Altogether these results highlight not only a new anti-oxidative pathway but also a promising molecule for possible future biotechnological applications.File | Dimensione | Formato | |
---|---|---|---|
Fiorentino et al 2020 IJBM.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Dominio pubblico
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.