Nitrogen is the primary technical means responsible for food production increase, but on the other hand, wise management is needed because its excessive use can have a negative impact on the environment and on green leafy vegetable quality, such as that rocket. Rocket has the characteristics of accumulating nitrate in leaves with possible impacts on human health. In order to overcome this issue, researchers are focusing their attention on the use of alternative means, such as plant biostimulant application. The scope of this study was to assess the effect of legume-derived protein hydrolysate(LDPH) and tropical plant extract(TPE), combined with various doses of nitrogen (0 kg ha−1 non-fertilized; N0); 60 kg ha−1 (sub-optimal; N1); 80 kg ha−1 (optimal; N2); and 100 kg ha−1 (supra-optimal; N3)), in order to reduce nitrogen use, boost yield, and enhance the chemical and nutritional value of leaves without significantly accumulating nitrate. Both vegetal-based plant biostimulants enhanced plant growth, boosted the marketable yield (especially at N0 and N1 levels, by 38.2% and 28.2%, respectively, compared to the non-treated control), and increased the SPAD (Soil Plant Analysis Development) index and leaf pigments content, such as chlorophyll and carotenoids, especially in treated-LDPH rocket. The plant-based biostimulants also produced a major amplification in lipophilic antioxidant activity (+ 48%) and total ascorbic acid content (average + 95.6%), especially at low nitrogen fertilization levels, and maintained nitrate content under the legal European Comission limits.

Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions / Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M.. - In: PLANTS. - ISSN 2223-7747. - 8:11(2019), p. 522. [10.3390/plants8110522]

Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions

Mola I.;Ottaiano L.;Giordano M.;El-Nakhel C.;Rouphael Y.;Colla G.;Mori M.
2019

Abstract

Nitrogen is the primary technical means responsible for food production increase, but on the other hand, wise management is needed because its excessive use can have a negative impact on the environment and on green leafy vegetable quality, such as that rocket. Rocket has the characteristics of accumulating nitrate in leaves with possible impacts on human health. In order to overcome this issue, researchers are focusing their attention on the use of alternative means, such as plant biostimulant application. The scope of this study was to assess the effect of legume-derived protein hydrolysate(LDPH) and tropical plant extract(TPE), combined with various doses of nitrogen (0 kg ha−1 non-fertilized; N0); 60 kg ha−1 (sub-optimal; N1); 80 kg ha−1 (optimal; N2); and 100 kg ha−1 (supra-optimal; N3)), in order to reduce nitrogen use, boost yield, and enhance the chemical and nutritional value of leaves without significantly accumulating nitrate. Both vegetal-based plant biostimulants enhanced plant growth, boosted the marketable yield (especially at N0 and N1 levels, by 38.2% and 28.2%, respectively, compared to the non-treated control), and increased the SPAD (Soil Plant Analysis Development) index and leaf pigments content, such as chlorophyll and carotenoids, especially in treated-LDPH rocket. The plant-based biostimulants also produced a major amplification in lipophilic antioxidant activity (+ 48%) and total ascorbic acid content (average + 95.6%), especially at low nitrogen fertilization levels, and maintained nitrate content under the legal European Comission limits.
2019
Plant-based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions / Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M.. - In: PLANTS. - ISSN 2223-7747. - 8:11(2019), p. 522. [10.3390/plants8110522]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/795442
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 74
social impact