Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ13C = 1.0 ± 0.6‰ V-PDB; avg. δ18O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ18O between 24.1 and 26.8‰ V-SMOW and δ13C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ18O (21.9 to 23.9‰) and lower δ13C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ13C = −6.3 and − 7.7‰; δ18O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ18O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.

From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy) / Mondillo, N.; Lupone, F.; Boni, M.; Joachimski, M.; Balassone, G.; De Angelis, M.; Zanin, S.; Granitzio, F.. - In: MINERALIUM DEPOSITA. - ISSN 0026-4598. - (2020). [10.1007/s00126-019-00912-5]

From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy)

Mondillo N.
;
Boni M.;Balassone G.;
2020

Abstract

Recent exploration of the Gorno Zn-Pb-Ag deposit in northern Italy identified 3.3 Mt of sulfides at 4.9% Zn, 1.3% Pb, and 27.2 g/t Ag (indicated+inferred resources), and a further mineralized nucleus of mixed sulfides-nonsulfides in the Val Vedra area, currently under evaluation. The ores are hosted in Triassic limestone and shale. Sulfides (sphalerite, Ag-bearing galena, minor pyrite, and chalcopyrite) paragenetically follow Mn-Fe-bearing saddle dolomite and sparry calcite. The mineral association, and the carbon and oxygen isotope ratios of the sparry calcite (avg. δ13C = 1.0 ± 0.6‰ V-PDB; avg. δ18O = 19.63 ± 1.25‰ V-SMOW), are in agreement with precipitation from hydrothermal fluids in a deep burial setting. Sulfide emplacement occurred before the Alpine orogeny, likely during the Early-Middle Jurassic, in analogy to other Alpine-type deposits. The nonsulfide ore formed at the expense of sulfides, and mainly consists of smithsonite, hydrozincite, hemimorphite, and cerussite. The C-O-isotope values of the early generations of Zn-carbonates are characterized by δ18O between 24.1 and 26.8‰ V-SMOW and δ13C ratios between − 3.1 and 1.7‰ V-PDB. The later generations have lower δ18O (21.9 to 23.9‰) and lower δ13C (− 6.2 to − 3.9‰). These compositions, as those measured on cerussite (δ13C = −6.3 and − 7.7‰; δ18O = 14.0 and 15.3‰), agree with the formation of the nonsulfides in a supergene environment, under climatic conditions warmer than today. The δ18O decrease from early to late generations suggests progressive involvement of meteoric water sourced from higher altitudes. These characteristics indicate that the nonsulfides formed during the exhumation of the Gorno area from Miocene to Pliocene.
2020
From Alpine-type sulfides to nonsulfides in the Gorno Zn project (Bergamo, Italy) / Mondillo, N.; Lupone, F.; Boni, M.; Joachimski, M.; Balassone, G.; De Angelis, M.; Zanin, S.; Granitzio, F.. - In: MINERALIUM DEPOSITA. - ISSN 0026-4598. - (2020). [10.1007/s00126-019-00912-5]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/790862
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact