The purpose of this paper is to present the relation between certain BMO-type seminorms and the total variation of SBV functions. Following some ideas of a recent paper by L. Ambrosio and G.E. Comi, we give a representation formula of the total variation of SBV functions which does not make use of the distributional derivatives. We consider an anisotropic variant of the BMO-type seminorm introduced in 2015 in a paper by J. Bourgain, H. Brezis and P. Mironescu, by using, instead of cubes, covering families made by translations of a given open bounded set with Lipschitz boundary.

A formula for the anisotropic total variation of SBV functions

Fernando Farroni;Nicola Fusco
;
Serena Guarino Lo Bianco;Roberta Schiattarella
2020

Abstract

The purpose of this paper is to present the relation between certain BMO-type seminorms and the total variation of SBV functions. Following some ideas of a recent paper by L. Ambrosio and G.E. Comi, we give a representation formula of the total variation of SBV functions which does not make use of the distributional derivatives. We consider an anisotropic variant of the BMO-type seminorm introduced in 2015 in a paper by J. Bourgain, H. Brezis and P. Mironescu, by using, instead of cubes, covering families made by translations of a given open bounded set with Lipschitz boundary.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/789557
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact