— This paper considers the uplink of a massive MIMO communication system using 5G New Radio-compliant multiple access, which has to co-exist with a radar system using the same frequency band. A system model taking into account the reverberation (clutter) produced by the radar system onto the massive MIMO receiver is proposed. In this scenario, several receivers for uplink channel estimation and data detection are proposed, ranging from the simple channel-matched beamformer to the zero-forcing and linear minimum mean square error receivers for clutter disturbance rejection, under the two opposite situations of perfectly known and completely unknown clutter covariance. A theoretical analysis is also provided, deriving a lower bound on the achievable uplink spectral efficiency and the mutual information between the input Gaussian-encoded symbols and the observables available at the communication receiver of the cellular massive MIMO system: regarding the latter, in particular, it is shown that, in the large antenna number regime, and under the assumption of perfect channel state information (CSI), the effect of radar clutter at the base station is suppressed and singleuser capacity may be restored. Numerical results, illustrating the performance of the proposed detection schemes, confirm the findings of the theoretical analysis, and permit quantifying the system robustness to clutter effect for increasing number of antennas at the base station.

Communications and Radar Coexistence in the Massive MIMO Regime: Uplink Analysis / D'Andrea, Carmen; Buzzi, Stefano; Lops, Marco. - In: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. - ISSN 1536-1276. - 19:1(2020), pp. 19-33. [10.1109/TWC.2019.2939816]

Communications and Radar Coexistence in the Massive MIMO Regime: Uplink Analysis

Marco Lops
2020

Abstract

— This paper considers the uplink of a massive MIMO communication system using 5G New Radio-compliant multiple access, which has to co-exist with a radar system using the same frequency band. A system model taking into account the reverberation (clutter) produced by the radar system onto the massive MIMO receiver is proposed. In this scenario, several receivers for uplink channel estimation and data detection are proposed, ranging from the simple channel-matched beamformer to the zero-forcing and linear minimum mean square error receivers for clutter disturbance rejection, under the two opposite situations of perfectly known and completely unknown clutter covariance. A theoretical analysis is also provided, deriving a lower bound on the achievable uplink spectral efficiency and the mutual information between the input Gaussian-encoded symbols and the observables available at the communication receiver of the cellular massive MIMO system: regarding the latter, in particular, it is shown that, in the large antenna number regime, and under the assumption of perfect channel state information (CSI), the effect of radar clutter at the base station is suppressed and singleuser capacity may be restored. Numerical results, illustrating the performance of the proposed detection schemes, confirm the findings of the theoretical analysis, and permit quantifying the system robustness to clutter effect for increasing number of antennas at the base station.
2020
Communications and Radar Coexistence in the Massive MIMO Regime: Uplink Analysis / D'Andrea, Carmen; Buzzi, Stefano; Lops, Marco. - In: IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS. - ISSN 1536-1276. - 19:1(2020), pp. 19-33. [10.1109/TWC.2019.2939816]
File in questo prodotto:
File Dimensione Formato  
TWC_massive.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.72 MB
Formato Adobe PDF
1.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/784422
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 22
social impact