We present the R package clustrd which implements a class of methods that combine dimension reduction and clustering of continuous or categorical data. In particular, for continuous data, the package contains implementations of factorial K-means and reduced K-means; both methods combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means, i-FCB and cluster correspondence analysis, which combine multiple correspondence analysis with K-means. Two examples on real data sets are provided to illustrate the usage of the main functions.

Beyond Tandem Analysis: Joint Dimension Reduction and Clustering in R

Iodice D'Enza Alfonso;
2019

Abstract

We present the R package clustrd which implements a class of methods that combine dimension reduction and clustering of continuous or categorical data. In particular, for continuous data, the package contains implementations of factorial K-means and reduced K-means; both methods combine principal component analysis with K-means clustering. For categorical data, the package provides MCA K-means, i-FCB and cluster correspondence analysis, which combine multiple correspondence analysis with K-means. Two examples on real data sets are provided to illustrate the usage of the main functions.
File in questo prodotto:
File Dimensione Formato  
v91i10.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 549.12 kB
Formato Adobe PDF
549.12 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/773186
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact