Chlorination of coastal (CS) and deep ocean (DO) seawater was accompanied by a prominent decrease (of up to 70%) of the intensity of its emission which was measured using a 315 nm excitation wavelength. Deconvolution of the emission spectra of CS and DO seawater showed that these spectra comprised three Gauss-shaped bands. The intensities of two of these bands decreased rapidly as the halogenation proceeded. For both DO and CS seawater, two stages of changes of their fluorescence were observed. The first stage in which the relative changes of the fluorescence intensity (ΔF/F) were between zero to 0.30 and 0.40 was not accompanied by the release of individual disinfection byproduct (DBP) species. For ΔF/F values above the corresponding thresholds, the relative changes of fluorescence intensity were well correlated with the concentrations of individual DBP species such as trihalomethanes and haloacetonitriles. R2 values for CHBr3, CHBr2Cl and CHBrCl2 formed in DO seawater were 0.83, 0.80 and 0.68, respectively while for CS seawater, the corresponding R2 values were 0.91, 0.93 and 0.92. The presented data demonstrate that the intrinsic chemistry of DBP formation and dissolved organic matter (DOM) halogenation in seawater can be well quantified based on the examination of changes of its fluorescence. This approach can also be employed for practical monitoring of changes of properties of marine DOM and generation of DBPs in desalination, marine aquaculture and other processes.

Effects of chlorination on the fluorescence of seawater: Pronounced changes of emission intensity and their relationships with the formation of disinfection byproducts / Fabbricino, M.; Yan, M.; Korshin, G. V.. - In: CHEMOSPHERE. - ISSN 0045-6535. - 218:(2019), pp. 430-437. [10.1016/j.chemosphere.2018.11.138]

Effects of chlorination on the fluorescence of seawater: Pronounced changes of emission intensity and their relationships with the formation of disinfection byproducts

Fabbricino M.;
2019

Abstract

Chlorination of coastal (CS) and deep ocean (DO) seawater was accompanied by a prominent decrease (of up to 70%) of the intensity of its emission which was measured using a 315 nm excitation wavelength. Deconvolution of the emission spectra of CS and DO seawater showed that these spectra comprised three Gauss-shaped bands. The intensities of two of these bands decreased rapidly as the halogenation proceeded. For both DO and CS seawater, two stages of changes of their fluorescence were observed. The first stage in which the relative changes of the fluorescence intensity (ΔF/F) were between zero to 0.30 and 0.40 was not accompanied by the release of individual disinfection byproduct (DBP) species. For ΔF/F values above the corresponding thresholds, the relative changes of fluorescence intensity were well correlated with the concentrations of individual DBP species such as trihalomethanes and haloacetonitriles. R2 values for CHBr3, CHBr2Cl and CHBrCl2 formed in DO seawater were 0.83, 0.80 and 0.68, respectively while for CS seawater, the corresponding R2 values were 0.91, 0.93 and 0.92. The presented data demonstrate that the intrinsic chemistry of DBP formation and dissolved organic matter (DOM) halogenation in seawater can be well quantified based on the examination of changes of its fluorescence. This approach can also be employed for practical monitoring of changes of properties of marine DOM and generation of DBPs in desalination, marine aquaculture and other processes.
2019
Effects of chlorination on the fluorescence of seawater: Pronounced changes of emission intensity and their relationships with the formation of disinfection byproducts / Fabbricino, M.; Yan, M.; Korshin, G. V.. - In: CHEMOSPHERE. - ISSN 0045-6535. - 218:(2019), pp. 430-437. [10.1016/j.chemosphere.2018.11.138]
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0045653518322458-main.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/767053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact