Since many oncogenes, including BCR-ABL, may promote the acquisition and maintenance of the glycolytic phenotype, we tested whether treatment of BCR-ABL-driven human leukemia cells with imatinib, a selective BCR-ABL inhibitor, can modulate the expression of key glycolytic enzymes and mitochondrial complex subunits thus causing alterations of glucose metabolism. BCR-ABL-driven K562 and KCL-22 cells were incubated with increasing concentrations of imatinib to preliminarily test drug sensitivity. Then untreated and treated cells were analyzed for levels of BCR-ABL signaling mediators and key proteins of glycolytic cascade and oxidative phosphorylation. Effective inhibition of BCR-ABL caused a concomitant reduction of p-ERK1/2, p-AKT, phosphorylated form of STAT3 (at Tyr705 and Ser727), c-Myc and cyclin D1 along with an increase of cleaved PARP and caspase 3 at 48 h after treatment. Furthermore, a strong reduction of the hexokinase II (HKII), phosphorylated form of PKM2 (at Tyr105 and Ser37) and lactate dehydrogenase A (LDH-A) was observed in response to imatinib along with a strong upregulation of mitochondrial complexes (OXPHOS). According to these findings, a significant reduction of glucose consumption and lactate secretion along with an increase of intracellular ATP levels was observed in response to imatinib. Our findings indicate that imatinib treatment of BCR-ABL-driven human leukemia cells reactivates mitochondrial oxidative phosphorylation thus allowing potential co-targeting of BCR-ABL and OXPHOS.

Coordinate modulation of glycolytic enzymes and OXPHOS by imatinib in BCR-ABL driven chronic myelogenous leukemia cells / De Rosa, V; Monti, M; Terlizzi, C; Fonti, R; Del Vecchio, S; Iommelli, F. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 20:13(2019), p. 3134. [10.3390/ijms20133134]

Coordinate modulation of glycolytic enzymes and OXPHOS by imatinib in BCR-ABL driven chronic myelogenous leukemia cells.

Terlizzi C;Fonti R;Del Vecchio S
;
2019

Abstract

Since many oncogenes, including BCR-ABL, may promote the acquisition and maintenance of the glycolytic phenotype, we tested whether treatment of BCR-ABL-driven human leukemia cells with imatinib, a selective BCR-ABL inhibitor, can modulate the expression of key glycolytic enzymes and mitochondrial complex subunits thus causing alterations of glucose metabolism. BCR-ABL-driven K562 and KCL-22 cells were incubated with increasing concentrations of imatinib to preliminarily test drug sensitivity. Then untreated and treated cells were analyzed for levels of BCR-ABL signaling mediators and key proteins of glycolytic cascade and oxidative phosphorylation. Effective inhibition of BCR-ABL caused a concomitant reduction of p-ERK1/2, p-AKT, phosphorylated form of STAT3 (at Tyr705 and Ser727), c-Myc and cyclin D1 along with an increase of cleaved PARP and caspase 3 at 48 h after treatment. Furthermore, a strong reduction of the hexokinase II (HKII), phosphorylated form of PKM2 (at Tyr105 and Ser37) and lactate dehydrogenase A (LDH-A) was observed in response to imatinib along with a strong upregulation of mitochondrial complexes (OXPHOS). According to these findings, a significant reduction of glucose consumption and lactate secretion along with an increase of intracellular ATP levels was observed in response to imatinib. Our findings indicate that imatinib treatment of BCR-ABL-driven human leukemia cells reactivates mitochondrial oxidative phosphorylation thus allowing potential co-targeting of BCR-ABL and OXPHOS.
2019
Coordinate modulation of glycolytic enzymes and OXPHOS by imatinib in BCR-ABL driven chronic myelogenous leukemia cells / De Rosa, V; Monti, M; Terlizzi, C; Fonti, R; Del Vecchio, S; Iommelli, F. - In: INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES. - ISSN 1422-0067. - 20:13(2019), p. 3134. [10.3390/ijms20133134]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/765015
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 19
social impact