We have used diffusion quantum Monte Carlo (DMC) calculations to study the pressure-induced phase transition from the diamond to beta-tin structure in silicon. The calculations employ the pseudopotential technique and systematically improvable B-spline basis sets. We show that in order to achieve a precision of 1 GPa in the transition pressure the noncanceling errors in the energies of the two structures must be reduced to 30 meV/atom. Extensive tests on system size errors, nonlocal pseudopotential errors, basis-set incompleteness errors, and other sources of error, performed on periodically repeated systems of up to 432 atoms, show that all these errors together can be reduced to well below 30 meV/atom. The calculated DMC transition pressure is about 3-4 GPa higher than the accepted experimental range of values, and we argue that the discrepancy may be due to the fixed-node error inherent in DMC techniques.

Diamond and beta-tin structures of Si studied with quantum Monte Carlo calculations / Alfe, D; Gillan, Mj; Towler, Md; Needs, Rj. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 70:21(2004). [10.1103/PhysRevB.70.214102]

Diamond and beta-tin structures of Si studied with quantum Monte Carlo calculations

Alfe D
;
2004

Abstract

We have used diffusion quantum Monte Carlo (DMC) calculations to study the pressure-induced phase transition from the diamond to beta-tin structure in silicon. The calculations employ the pseudopotential technique and systematically improvable B-spline basis sets. We show that in order to achieve a precision of 1 GPa in the transition pressure the noncanceling errors in the energies of the two structures must be reduced to 30 meV/atom. Extensive tests on system size errors, nonlocal pseudopotential errors, basis-set incompleteness errors, and other sources of error, performed on periodically repeated systems of up to 432 atoms, show that all these errors together can be reduced to well below 30 meV/atom. The calculated DMC transition pressure is about 3-4 GPa higher than the accepted experimental range of values, and we argue that the discrepancy may be due to the fixed-node error inherent in DMC techniques.
2004
Diamond and beta-tin structures of Si studied with quantum Monte Carlo calculations / Alfe, D; Gillan, Mj; Towler, Md; Needs, Rj. - In: PHYSICAL REVIEW. B, CONDENSED MATTER AND MATERIALS PHYSICS. - ISSN 1098-0121. - 70:21(2004). [10.1103/PhysRevB.70.214102]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/753162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 38
  • ???jsp.display-item.citation.isi??? 36
social impact