Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide β-endorphin. CB1R activation selectively increases β-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.

Hypothalamic POMC neurons promote cannabinoid-induced feeding / Koch, Marco; Varela, Luis; Kim, Jae Geun; Kim, Jung Dae; Hernández-Nuño, Francisco; Simonds, Stephanie E; Castorena, Carlos M; Vianna, Claudia R; Elmquist, Joel K; Morozov, Yury M; Rakic, Pasko; Bechmann, Ingo; Cowley, Michael A; Szigeti-Buck, Klara; Dietrich, Marcelo O; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L. - In: NATURE. - ISSN 0028-0836. - 519:7541(2015), pp. 45-50. [10.1038/nature14260]

Hypothalamic POMC neurons promote cannabinoid-induced feeding

Diano, Sabrina;
2015

Abstract

Hypothalamic pro-opiomelanocortin (POMC) neurons promote satiety. Cannabinoid receptor 1 (CB1R) is critical for the central regulation of food intake. Here we test whether CB1R-controlled feeding in sated mice is paralleled by decreased activity of POMC neurons. We show that chemical promotion of CB1R activity increases feeding, and notably, CB1R activation also promotes neuronal activity of POMC cells. This paradoxical increase in POMC activity was crucial for CB1R-induced feeding, because designer-receptors-exclusively-activated-by-designer-drugs (DREADD)-mediated inhibition of POMC neurons diminishes, whereas DREADD-mediated activation of POMC neurons enhances CB1R-driven feeding. The Pomc gene encodes both the anorexigenic peptide α-melanocyte-stimulating hormone, and the opioid peptide β-endorphin. CB1R activation selectively increases β-endorphin but not α-melanocyte-stimulating hormone release in the hypothalamus, and systemic or hypothalamic administration of the opioid receptor antagonist naloxone blocks acute CB1R-induced feeding. These processes involve mitochondrial adaptations that, when blocked, abolish CB1R-induced cellular responses and feeding. Together, these results uncover a previously unsuspected role of POMC neurons in the promotion of feeding by cannabinoids.
2015
Hypothalamic POMC neurons promote cannabinoid-induced feeding / Koch, Marco; Varela, Luis; Kim, Jae Geun; Kim, Jung Dae; Hernández-Nuño, Francisco; Simonds, Stephanie E; Castorena, Carlos M; Vianna, Claudia R; Elmquist, Joel K; Morozov, Yury M; Rakic, Pasko; Bechmann, Ingo; Cowley, Michael A; Szigeti-Buck, Klara; Dietrich, Marcelo O; Gao, Xiao-Bing; Diano, Sabrina; Horvath, Tamas L. - In: NATURE. - ISSN 0028-0836. - 519:7541(2015), pp. 45-50. [10.1038/nature14260]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/753152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 313
  • ???jsp.display-item.citation.isi??? 279
social impact