The comprehensive optimization of building energy design is fundamental to promote sustainability but it is an arduous issue that involves a huge domain of variables and objectives. The proposed investigation addresses this issue through a novel comprehensive framework – Harlequin – that performs a multi-phase and multi-objective design optimization. Three phases are carried out to optimize design variables related to the whole building-plants system, considering different energy, comfort, economic and environmental performance indicators. Phase 1 implements a genetic algorithm to achieve the Pareto optimization of envelope, geometry and space conditioning set points. Phase 2 performs a smart exhaustive sampling of design scenarios to find optimal energy systems. Phase 3 provides the most sustainable, the cost-optimal and the lowest investment (but energy-efficient) design solutions. Among these, the stakeholders can choose the best solution according to their wills and needs. Harlequin uses EnergyPlus (only in phase 1) and MATLAB® and it is so-called because building geometry and envelope are optimized for each exposure, thereby providing “Harlequin buildings”. The novelty and scientific significance consist in ensuring a reliable design optimization by investigating a domain of variables and objectives, as comprehensive as never before. As a case study, Harlequin is applied to design a typical Italian office in Milan. Compared to a reference design, significant reductions of primary energy consumption (PEC), global cost (GC) and CO 2 -eq emissions can be achieved, depending on the chosen solution. The maximum reductions are 43.9 kWh p /m 2 a for PEC, 63.9 €/m 2 for GC (discount rate of 3%) and 12.3 kg/m 2 a for CO 2 -eq. © 2019 Elsevier Ltd

A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin / Ascione, Fabrizio; Bianco, Nicola; Mauro, Gerardo Maria; Vanoli, Giuseppe Peter. - In: APPLIED ENERGY. - ISSN 0306-2619. - 241:(2019), pp. 331-361. [10.1016/j.apenergy.2019.03.028]

A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin

Ascione, Fabrizio
;
Bianco, Nicola;
2019

Abstract

The comprehensive optimization of building energy design is fundamental to promote sustainability but it is an arduous issue that involves a huge domain of variables and objectives. The proposed investigation addresses this issue through a novel comprehensive framework – Harlequin – that performs a multi-phase and multi-objective design optimization. Three phases are carried out to optimize design variables related to the whole building-plants system, considering different energy, comfort, economic and environmental performance indicators. Phase 1 implements a genetic algorithm to achieve the Pareto optimization of envelope, geometry and space conditioning set points. Phase 2 performs a smart exhaustive sampling of design scenarios to find optimal energy systems. Phase 3 provides the most sustainable, the cost-optimal and the lowest investment (but energy-efficient) design solutions. Among these, the stakeholders can choose the best solution according to their wills and needs. Harlequin uses EnergyPlus (only in phase 1) and MATLAB® and it is so-called because building geometry and envelope are optimized for each exposure, thereby providing “Harlequin buildings”. The novelty and scientific significance consist in ensuring a reliable design optimization by investigating a domain of variables and objectives, as comprehensive as never before. As a case study, Harlequin is applied to design a typical Italian office in Milan. Compared to a reference design, significant reductions of primary energy consumption (PEC), global cost (GC) and CO 2 -eq emissions can be achieved, depending on the chosen solution. The maximum reductions are 43.9 kWh p /m 2 a for PEC, 63.9 €/m 2 for GC (discount rate of 3%) and 12.3 kg/m 2 a for CO 2 -eq. © 2019 Elsevier Ltd
2019
A new comprehensive framework for the multi-objective optimization of building energy design: Harlequin / Ascione, Fabrizio; Bianco, Nicola; Mauro, Gerardo Maria; Vanoli, Giuseppe Peter. - In: APPLIED ENERGY. - ISSN 0306-2619. - 241:(2019), pp. 331-361. [10.1016/j.apenergy.2019.03.028]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/747709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 65
social impact