WebDav and HTTP are becoming popular protocols for data access in the High Energy Physics community. The most used Grid and Cloud storage solutions provide such kind of interfaces, in this scenario tuning and performance evaluation became crucial aspects to promote the adoption of these protocols within the Belle II community. In this work, we present the results of a large-scale test activity, made with the goal to evaluate performances and reliability of the WebDav protocol, and study a possible adoption for the user analysis. More specifically, we considered a pilot infrastructure composed by a set of storage elements configured with the WebDav interface, hosted at the Belle II sites. The performance tests include a comparison with xrootd and gridftp. As reference tests we used a set of analysis jobs running under the Belle II software framework, accessing the input data with the ROOT I/O library, in order to simulate as much as possible a realistic user activity. The final analysis shows the possibility to achieve promising performances with WebDav on different storage systems, and gives an interesting feedback, for Belle II community and for other high energy physics experiments.

A performance study of WebDav access to storages within the Belle II collaboration

Russo, G.
Writing – Review & Editing
2017

Abstract

WebDav and HTTP are becoming popular protocols for data access in the High Energy Physics community. The most used Grid and Cloud storage solutions provide such kind of interfaces, in this scenario tuning and performance evaluation became crucial aspects to promote the adoption of these protocols within the Belle II community. In this work, we present the results of a large-scale test activity, made with the goal to evaluate performances and reliability of the WebDav protocol, and study a possible adoption for the user analysis. More specifically, we considered a pilot infrastructure composed by a set of storage elements configured with the WebDav interface, hosted at the Belle II sites. The performance tests include a comparison with xrootd and gridftp. As reference tests we used a set of analysis jobs running under the Belle II software framework, accessing the input data with the ROOT I/O library, in order to simulate as much as possible a realistic user activity. The final analysis shows the possibility to achieve promising performances with WebDav on different storage systems, and gives an interesting feedback, for Belle II community and for other high energy physics experiments.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/743491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact