Eruption forecasting is a major goal in volcanology. Logically, but unfortunately, forecasting hazards related to non-magmatic unrest is too often overshadowed by eruption forecasting, although many volcanoes often pass through states of non-eruptive and non-magmatic unrest for various and prolonged periods of time. Volcanic hazards related to non-magmatic unrest can be highly violent and/or destructive (e.g., phreatic eruptions, secondary lahars), can lead into magmatic and eventually eruptive unrest, and can be more difficult to forecast than magmatic unrest, for various reasons. The duration of a state of non-magmatic unrest and the cause, type and locus of hazardous events can be highly variable. Moreover, non-magmatic hazards can be related to factors external to the volcano (e.g., climate, earthquake). So far, monitoring networks are often limited to the usual seismic-ground deformation-gas network, whereas recognizing indicators for non-magmatic unrest requires additional approaches. In this study we summarize non-magmatic unrest processes and potential indicators for related hazards. We propose an event-tree to classify non-magmatic unrest, which aims to cover all major hazardous outcomes. This structure could become useful for future probabilistic non-magmatic hazard assessments, and might reveal clues for future monitoring strategies. © 2014 Rouwet et al.

Recognizing and tracking volcanic hazards related to non-magmatic unrest: A review / Rouwet, D.; Sandri, L.; Marzocchi, W.; Gottsmann, J.; Selva, J.; Tonini, R.; Papale, P.. - In: JOURNAL OF APPLIED VOLCANOLOGY. - ISSN 2191-5040. - 3:1(2014). [10.1186/s13617-014-0017-3]

Recognizing and tracking volcanic hazards related to non-magmatic unrest: A review

Marzocchi, W.;Selva, J.;
2014

Abstract

Eruption forecasting is a major goal in volcanology. Logically, but unfortunately, forecasting hazards related to non-magmatic unrest is too often overshadowed by eruption forecasting, although many volcanoes often pass through states of non-eruptive and non-magmatic unrest for various and prolonged periods of time. Volcanic hazards related to non-magmatic unrest can be highly violent and/or destructive (e.g., phreatic eruptions, secondary lahars), can lead into magmatic and eventually eruptive unrest, and can be more difficult to forecast than magmatic unrest, for various reasons. The duration of a state of non-magmatic unrest and the cause, type and locus of hazardous events can be highly variable. Moreover, non-magmatic hazards can be related to factors external to the volcano (e.g., climate, earthquake). So far, monitoring networks are often limited to the usual seismic-ground deformation-gas network, whereas recognizing indicators for non-magmatic unrest requires additional approaches. In this study we summarize non-magmatic unrest processes and potential indicators for related hazards. We propose an event-tree to classify non-magmatic unrest, which aims to cover all major hazardous outcomes. This structure could become useful for future probabilistic non-magmatic hazard assessments, and might reveal clues for future monitoring strategies. © 2014 Rouwet et al.
2014
Recognizing and tracking volcanic hazards related to non-magmatic unrest: A review / Rouwet, D.; Sandri, L.; Marzocchi, W.; Gottsmann, J.; Selva, J.; Tonini, R.; Papale, P.. - In: JOURNAL OF APPLIED VOLCANOLOGY. - ISSN 2191-5040. - 3:1(2014). [10.1186/s13617-014-0017-3]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/742626
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? ND
social impact