Tn this paper \'ve consider the finite-time stabilit.y problem for linear systeIns subject to tin1e-varying parau1etric uncertainties_ First \'Ve provide a sufficient condition for robust finite--tin1e stabilization via state feedback in terrns of a Linear 1\'1aLrix Inequalities (Ll\,1I~s) feasjhilit;y problern; such conditjon is sho\-vn to be less conservative than those proposed in the previous literature. rfhen vvc consider tlIe output feedback C(h~e; ~ufficient. condit.ion for robust finite-tlrne sLabilization are given for different kinds of controlIprs: 8tatic, dyna1nir1 dynarnir and galn.-schedvled \vith the paranleters. j\lthough the output feedback problen1 cannot be reduced to an L1\tlI's based feasibility probleln~ \ve provide an jterabve aJgorithrn \vhich has proved to be efllcipnJ. in Inost. case.s. j\ detailed e.xan1ple illustrates the effectiveness of the proposed technique.

Robust finite-time stabilization of linear uncertain systems via gain-scheduled output feedback

F. Amato;
1999

Abstract

Tn this paper \'ve consider the finite-time stabilit.y problem for linear systeIns subject to tin1e-varying parau1etric uncertainties_ First \'Ve provide a sufficient condition for robust finite--tin1e stabilization via state feedback in terrns of a Linear 1\'1aLrix Inequalities (Ll\,1I~s) feasjhilit;y problern; such conditjon is sho\-vn to be less conservative than those proposed in the previous literature. rfhen vvc consider tlIe output feedback C(h~e; ~ufficient. condit.ion for robust finite-tlrne sLabilization are given for different kinds of controlIprs: 8tatic, dyna1nir1 dynarnir and galn.-schedvled \vith the paranleters. j\lthough the output feedback problen1 cannot be reduced to an L1\tlI's based feasibility probleln~ \ve provide an jterabve aJgorithrn \vhich has proved to be efllcipnJ. in Inost. case.s. j\ detailed e.xan1ple illustrates the effectiveness of the proposed technique.
File in questo prodotto:
File Dimensione Formato  
paper.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 3.37 MB
Formato Adobe PDF
3.37 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/739491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact