Incorporating disparate features from multiple sources can provide valuable diverse information for remote sensing data analysis. However, multisource remote sensing data require large quantities of labeled data to train robust supervised classifiers, which are often difficult and expensive to acquire. A mixture-of-kernel approach can facilitate the construction of an effective formulation for acquiring useful samples via active learning (AL). In this paper, we propose an ensemble multiple kernel active learning (EnsembleMKL-AL) framework that incorporates different types of features extracted from multisensor remote sensing data (hyperspectral imagery and LiDAR data) for robust classification. An ensemble of probabilistic multiple kernel classifiers is embedded into a maximum disagreement-based AL system, which adaptively optimizes the kernel for each source during the AL process. At the end of each learning step, a decision fusion strategy is implemented to make a final decision based on the probabilistic outputs. The proposed framework is tested in a multisource environment, including different types of features extracted from hyperspectral and LiDAR data. The experimental results validate the efficacy of the proposed approach. In addition, we demonstrate that using ensemble classifiers and a large number of disparate but relevant features can further improve the performance of an AL-based classification approach.
Ensemble multiple kernel active learning for classification of multisource remote sensing data / Zhang, Yuhang; Yang, Hsiuhan Lexie; Prasad, Saurabh; Pasolli, Edoardo; Jung, Jinha; Crawford, Melba. - In: IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING. - ISSN 1939-1404. - 8:2(2015), pp. 845-858. [10.1109/JSTARS.2014.2359136]
Ensemble multiple kernel active learning for classification of multisource remote sensing data
Pasolli, Edoardo;
2015
Abstract
Incorporating disparate features from multiple sources can provide valuable diverse information for remote sensing data analysis. However, multisource remote sensing data require large quantities of labeled data to train robust supervised classifiers, which are often difficult and expensive to acquire. A mixture-of-kernel approach can facilitate the construction of an effective formulation for acquiring useful samples via active learning (AL). In this paper, we propose an ensemble multiple kernel active learning (EnsembleMKL-AL) framework that incorporates different types of features extracted from multisensor remote sensing data (hyperspectral imagery and LiDAR data) for robust classification. An ensemble of probabilistic multiple kernel classifiers is embedded into a maximum disagreement-based AL system, which adaptively optimizes the kernel for each source during the AL process. At the end of each learning step, a decision fusion strategy is implemented to make a final decision based on the probabilistic outputs. The proposed framework is tested in a multisource environment, including different types of features extracted from hyperspectral and LiDAR data. The experimental results validate the efficacy of the proposed approach. In addition, we demonstrate that using ensemble classifiers and a large number of disparate but relevant features can further improve the performance of an AL-based classification approach.File | Dimensione | Formato | |
---|---|---|---|
Zhang_2014.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print
Licenza:
Accesso privato/ristretto
Dimensione
2.36 MB
Formato
Adobe PDF
|
2.36 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.