In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly reduces the quadrature computational cost.

Efficient matrix computation for tensor-product isogeometric analysis: The use of sum factorization

Calabrò F.;
2015

Abstract

In this paper we discuss the use of the sum-factorization for the calculation of the integrals arising in Galerkin isogeometric analysis. While introducing very little change in an isogeometric code based on element-by-element quadrature and assembling, the sum-factorization approach, taking advantage of the tensor-product structure of splines or NURBS shape functions, significantly reduces the quadrature computational cost.
File in questo prodotto:
File Dimensione Formato  
CMAME_ABCMS_2015.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 512.58 kB
Formato Adobe PDF
512.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/731828
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 52
  • ???jsp.display-item.citation.isi??? 46
social impact