Oxygenated derivatives of polycyclic aromatic hydrocarbons (PAHs), or oxyPAHs, recently captured the interest of the scientific community for their photochemical reactivity in a water-ice matrix mimicking the interstellar medium. Furthermore, oxyPAHs are interesting molecules for the study of the origin of life for their prebiotic potential. However, their stability and transformation pathways under astrophysically relevant conditions have remained largely unexplored. Herein we report the photochemical behavior of 1-naphthol (1-HN) and 1,6- and 1,8-dihydroxynaphthalene (DHN) either as pure powdered solids or adsorbed on forsterite or anatase surface. All the compounds showed an extensive decrease of main vibrational bands, accompanied in the case of DHNs by the formation of new molecular species. Irradiation of 1,8-DHN at 80 K resulted in the IR-detectable generation of CO2 (2340 cm-1), a process reported by other authors following irradiation of PAHs in water-ice analogues at 14 K. These results, when compared to model autoxidation experiments, indicated a high susceptibility of hydroxylated naphthalene derivatives to UV radiation leading to free radical and carbonyl-containing extended quinone intermediates (preliminary DFT calculations) with partial degradation and decarboxylation. On the basis of these results, oxyPAH formation and photoprocessing on minerals is proposed as a plausible pathway of PAHs transformation under astrochemical conditions of prebiotic relevance.

Solid State Photochemistry of Hydroxylated Naphthalenes on Minerals: Probing Polycyclic Aromatic Hydrocarbon Transformation Pathways under Astrochemically-Relevant Conditions / Potenti, Simone; Manini, Paola; Fornaro, Teresa; Poggiali, Giovanni; Crescenzi, Orlando; Napolitano, Alessandra; R Brucato, John; Barone, Vincenzo; D'Ischia, Marco. - In: ACS EARTH AND SPACE CHEMISTRY. - ISSN 2472-3452. - 2:10(2018), pp. 977-1000. [10.1021/acsearthspacechem.8b00060]

Solid State Photochemistry of Hydroxylated Naphthalenes on Minerals: Probing Polycyclic Aromatic Hydrocarbon Transformation Pathways under Astrochemically-Relevant Conditions

Paola Manini;Orlando Crescenzi;Alessandra Napolitano;Marco d’Ischia
2018

Abstract

Oxygenated derivatives of polycyclic aromatic hydrocarbons (PAHs), or oxyPAHs, recently captured the interest of the scientific community for their photochemical reactivity in a water-ice matrix mimicking the interstellar medium. Furthermore, oxyPAHs are interesting molecules for the study of the origin of life for their prebiotic potential. However, their stability and transformation pathways under astrophysically relevant conditions have remained largely unexplored. Herein we report the photochemical behavior of 1-naphthol (1-HN) and 1,6- and 1,8-dihydroxynaphthalene (DHN) either as pure powdered solids or adsorbed on forsterite or anatase surface. All the compounds showed an extensive decrease of main vibrational bands, accompanied in the case of DHNs by the formation of new molecular species. Irradiation of 1,8-DHN at 80 K resulted in the IR-detectable generation of CO2 (2340 cm-1), a process reported by other authors following irradiation of PAHs in water-ice analogues at 14 K. These results, when compared to model autoxidation experiments, indicated a high susceptibility of hydroxylated naphthalene derivatives to UV radiation leading to free radical and carbonyl-containing extended quinone intermediates (preliminary DFT calculations) with partial degradation and decarboxylation. On the basis of these results, oxyPAH formation and photoprocessing on minerals is proposed as a plausible pathway of PAHs transformation under astrochemical conditions of prebiotic relevance.
2018
Solid State Photochemistry of Hydroxylated Naphthalenes on Minerals: Probing Polycyclic Aromatic Hydrocarbon Transformation Pathways under Astrochemically-Relevant Conditions / Potenti, Simone; Manini, Paola; Fornaro, Teresa; Poggiali, Giovanni; Crescenzi, Orlando; Napolitano, Alessandra; R Brucato, John; Barone, Vincenzo; D'Ischia, Marco. - In: ACS EARTH AND SPACE CHEMISTRY. - ISSN 2472-3452. - 2:10(2018), pp. 977-1000. [10.1021/acsearthspacechem.8b00060]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/728762
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 10
social impact