The authors deal with constant false alarm rate (CFAR) procedures against nonstationary clutter, modeled as a Weibull distributed process whose scale parameter alpha and shape parameter beta are both variable. It is shown that conventional CFAR procedures, which compensate only for alpha , degrade intolerably as beta deviates from beta =2, namely, as the Rayleigh distributional assumption is violated. A biparametric CFAR procedure is shown to be suited to such situations. The authors introduce a logarithmic transformation to reduce the Weibull probability density function (pdf) to a Gumbel pdf, i.e., to the location-scale type, and then exploit the best linear unbiased estimation (BLUE) of location-scale parameters to adjust the detection threshold. True CFAR is thus achieved when the clutter is locally homogeneous. Resilience against local inhomogeneities can also be conferred since BLUE lends itself to censoring. Through a performance analysis, the influence of various system and distributional parameters is elicited.

Biparametric Linear Estimation for CFAR against Weibull Clutter / M., Guida; M., Longo; Lops, M.. - In: IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. - ISSN 0018-9251. - 28:1(1992), pp. 138-152. [10.1109/7.135440]

Biparametric Linear Estimation for CFAR against Weibull Clutter

M. LOPS
1992

Abstract

The authors deal with constant false alarm rate (CFAR) procedures against nonstationary clutter, modeled as a Weibull distributed process whose scale parameter alpha and shape parameter beta are both variable. It is shown that conventional CFAR procedures, which compensate only for alpha , degrade intolerably as beta deviates from beta =2, namely, as the Rayleigh distributional assumption is violated. A biparametric CFAR procedure is shown to be suited to such situations. The authors introduce a logarithmic transformation to reduce the Weibull probability density function (pdf) to a Gumbel pdf, i.e., to the location-scale type, and then exploit the best linear unbiased estimation (BLUE) of location-scale parameters to adjust the detection threshold. True CFAR is thus achieved when the clutter is locally homogeneous. Resilience against local inhomogeneities can also be conferred since BLUE lends itself to censoring. Through a performance analysis, the influence of various system and distributional parameters is elicited.
1992
Biparametric Linear Estimation for CFAR against Weibull Clutter / M., Guida; M., Longo; Lops, M.. - In: IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS. - ISSN 0018-9251. - 28:1(1992), pp. 138-152. [10.1109/7.135440]
File in questo prodotto:
File Dimensione Formato  
Guida_Longo_Lops.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 1.27 MB
Formato Adobe PDF
1.27 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/728643
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 38
social impact