This paper deals with the problem of stabilizing a bilinear system via linear state-feedback control. The proposed procedures enable us to compute a static state-feedback controller such that the zero-equilibrium point of the closed-loop system is asymptotically stable; moreover, it ensure that an assigned polytopic region is enclosed into the domain of attraction of the equilibrium point. The controller design requires the solution of a convex optimization problem involving linear matrix inequalities. The applicability of the technique is illustrated through an example, dealing with the design of a controller for a C´ uk dc–dc converter.

Stabilization of bilinear systems via linear state-feedback control

Amato F.;
2009

Abstract

This paper deals with the problem of stabilizing a bilinear system via linear state-feedback control. The proposed procedures enable us to compute a static state-feedback controller such that the zero-equilibrium point of the closed-loop system is asymptotically stable; moreover, it ensure that an assigned polytopic region is enclosed into the domain of attraction of the equilibrium point. The controller design requires the solution of a convex optimization problem involving linear matrix inequalities. The applicability of the technique is illustrated through an example, dealing with the design of a controller for a C´ uk dc–dc converter.
File in questo prodotto:
File Dimensione Formato  
Amato_et_al_-_Stabilization_of_Bilinear_Systems_Via_Linear_State-Feedback_Control_-_TCASII.pdf

non disponibili

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 266.76 kB
Formato Adobe PDF
266.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11588/725989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 63
social impact