In the framework of Clean Sky 2 Airgreen 2 (REG-IADP) European research project, a novel multifunctional morphing flap technology was investigated to improve the aerodynamic performances of the next Turboprop regional aircraft (90 passengers) along its flight mission. The proposed true-scale device (5 meters span with a mean chord of 0.6 meters) is conceived to replace and enhance conventional Fowler flap with new functionalities. Three different functions were enabled: overall airfoil camber morphing up to +30° (mode 1), +10°/-10° (upwards/downwards) deflections of the flap tip segment (mode 2), flap tip “segmented” twist of ±5° along the outer flap span (mode 3). Morphing mode 1 is supposed to be activated during take-off and landing only to enhance aircraft high-lift performances and steeper initial climb and descent. Thanks to this function, more airfoil shapes are available at each flap setting and therefore a dramatic simplification of the flap deployment system may be implemented. Morphing modes 2 and 3 are enabled in cruise and off-design flight conditions to improve wing aerodynamic efficiency. The novel structural concept of the three-modal morphing Fowler flap (3MMF) was designed according to the challenges posed by real wing installation issues. The proposed concept consists of a multi-box arrangement activated by segmented ribs with embedded inner mechanisms to realize the transition from the baseline configuration to different target aero-shapes while withstanding the aerodynamic loads. Lightweight and compact actuating leverages driven by electromechanical motors were properly synthesized to comply with stringent requirements for real aircraft implementation: minimum actuating torque, minimum number of motors, reduced weight, and available design space. The methodology for the kinematic design of the inner mechanisms is based on a building block approach where the instant center analysis tool is used to preliminary select the locations of the hinges’ leverages. The final geometry of the inner mechanisms is optimized to maximize the mechanical advantage as well as to provide the kinematic performances required by the three different morphing modes. The load-path was evaluated, and the cross-sectional size of leverages was subsequently optimized. Finally, actuating torques predicted by instant center analysis were compared to the calculated values from finite element analysis. The structural sizing process of the multi-box arrangement was carried out considering elementary methods, and results were compared with finite element simulations.

Structural design of a multifunctional morphing fowler flap for a twin-prop regional aircraft / Rea, Francesco; Amoroso, Francesco; Pecora, Rosario; Noviello, MARIA CHIARA; Arena, Maurizio. - (2018). (Intervento presentato al convegno SMASIS 2018 - Smart Materials, Adaptive Structures and Intelligent Systems Conference tenutosi a San Antonio (TX, USA) nel 10 - 12 Settembre).

Structural design of a multifunctional morphing fowler flap for a twin-prop regional aircraft

Francesco Rea
;
FRancesco Amoroso
;
Rosario Pecora
;
Maria Chiara Noviello;Arena Maurizio
2018

Abstract

In the framework of Clean Sky 2 Airgreen 2 (REG-IADP) European research project, a novel multifunctional morphing flap technology was investigated to improve the aerodynamic performances of the next Turboprop regional aircraft (90 passengers) along its flight mission. The proposed true-scale device (5 meters span with a mean chord of 0.6 meters) is conceived to replace and enhance conventional Fowler flap with new functionalities. Three different functions were enabled: overall airfoil camber morphing up to +30° (mode 1), +10°/-10° (upwards/downwards) deflections of the flap tip segment (mode 2), flap tip “segmented” twist of ±5° along the outer flap span (mode 3). Morphing mode 1 is supposed to be activated during take-off and landing only to enhance aircraft high-lift performances and steeper initial climb and descent. Thanks to this function, more airfoil shapes are available at each flap setting and therefore a dramatic simplification of the flap deployment system may be implemented. Morphing modes 2 and 3 are enabled in cruise and off-design flight conditions to improve wing aerodynamic efficiency. The novel structural concept of the three-modal morphing Fowler flap (3MMF) was designed according to the challenges posed by real wing installation issues. The proposed concept consists of a multi-box arrangement activated by segmented ribs with embedded inner mechanisms to realize the transition from the baseline configuration to different target aero-shapes while withstanding the aerodynamic loads. Lightweight and compact actuating leverages driven by electromechanical motors were properly synthesized to comply with stringent requirements for real aircraft implementation: minimum actuating torque, minimum number of motors, reduced weight, and available design space. The methodology for the kinematic design of the inner mechanisms is based on a building block approach where the instant center analysis tool is used to preliminary select the locations of the hinges’ leverages. The final geometry of the inner mechanisms is optimized to maximize the mechanical advantage as well as to provide the kinematic performances required by the three different morphing modes. The load-path was evaluated, and the cross-sectional size of leverages was subsequently optimized. Finally, actuating torques predicted by instant center analysis were compared to the calculated values from finite element analysis. The structural sizing process of the multi-box arrangement was carried out considering elementary methods, and results were compared with finite element simulations.
2018
Structural design of a multifunctional morphing fowler flap for a twin-prop regional aircraft / Rea, Francesco; Amoroso, Francesco; Pecora, Rosario; Noviello, MARIA CHIARA; Arena, Maurizio. - (2018). (Intervento presentato al convegno SMASIS 2018 - Smart Materials, Adaptive Structures and Intelligent Systems Conference tenutosi a San Antonio (TX, USA) nel 10 - 12 Settembre).
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/724489
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 2
social impact