A simple mechanical system, the three-dimensional isotropic rigid rotator, is here inves-tigated as a 0+1 field theory, aiming at further investigating the relation between Generalized/Double Geometry on the one hand and Doubled World-Sheet Formalism/Double FieldTheory, on the other hand. The model is defined over the group manifold of SU(2) and a dual model is introduced having the Poisson-Lie dual of SU(2) as configuration space. A generalized action with configuration space SL(2,C), i.e. the Drinfel’d double of the group SU(2), is then defined: it reduces to the original action of the rotator or to its dual, once constraints are implemented. The new action contains twice as many variables as the original. Moreover its geometric structures can be understood in terms of Generalized Geometry.

Doubling, T-Duality and Generalized Geometry: a simple model

PEZZELLA, Franco;Patrizia Vitale
2018

Abstract

A simple mechanical system, the three-dimensional isotropic rigid rotator, is here inves-tigated as a 0+1 field theory, aiming at further investigating the relation between Generalized/Double Geometry on the one hand and Doubled World-Sheet Formalism/Double FieldTheory, on the other hand. The model is defined over the group manifold of SU(2) and a dual model is introduced having the Poisson-Lie dual of SU(2) as configuration space. A generalized action with configuration space SL(2,C), i.e. the Drinfel’d double of the group SU(2), is then defined: it reduces to the original action of the rotator or to its dual, once constraints are implemented. The new action contains twice as many variables as the original. Moreover its geometric structures can be understood in terms of Generalized Geometry.
File in questo prodotto:
File Dimensione Formato  
1804.00744.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 420.79 kB
Formato Adobe PDF
420.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/723328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 18
social impact