Ammonia is a highly neurotoxic metabolite that is efficiently converted into urea or glutamine. During liver failure due to hepatocellular dysfunction or in inherited deficiencies of urea cycle enzymes, ammonia clearance is impaired resulting in systemic hyperammonemia and hepatic encephalopathy that can rapidly progress into coma and death if left untreated. Because available therapeutic options are often unsatisfactory, the development of effective therapies for hyperammonemia is highly needed. Here, we review our recent findings on the role of hepatic macroautophagy/autophagy in ammonia detoxification. We found that during hyperammonemia, ammonia-induced depletion of liver alpha-ketoglutarate and its consequent inhibition of the mechanistic target of rapamycin kinase complex 1 results in autophagy induction. Metabolite recycling induced by enhanced hepatic autophagy increases the efficiency of ammonia detoxification by furnishing key urea cycle intermediates and ATP, and stimulating ureagenesis. Moreover, autophagy enhancement by liver-directed gene transfer of the master regulator of autophagy TFEB (transcription factor EB) or treatments with the autophagy enhancers rapamycin and Tat-beclin 1 improve ammonia detoxification during hyperammonemia occurring as a consequence of either acquired or inherited diseases.

Targeting autophagy for therapy of hyperammonemia / Soria, Leandro R.; Brunetti-Pierri, Nicola. - In: AUTOPHAGY. - ISSN 1554-8627. - 14:7(2018), pp. 1273-1275-1275. [10.1080/15548627.2018.1444312]

Targeting autophagy for therapy of hyperammonemia

Brunetti-Pierri, Nicola
2018

Abstract

Ammonia is a highly neurotoxic metabolite that is efficiently converted into urea or glutamine. During liver failure due to hepatocellular dysfunction or in inherited deficiencies of urea cycle enzymes, ammonia clearance is impaired resulting in systemic hyperammonemia and hepatic encephalopathy that can rapidly progress into coma and death if left untreated. Because available therapeutic options are often unsatisfactory, the development of effective therapies for hyperammonemia is highly needed. Here, we review our recent findings on the role of hepatic macroautophagy/autophagy in ammonia detoxification. We found that during hyperammonemia, ammonia-induced depletion of liver alpha-ketoglutarate and its consequent inhibition of the mechanistic target of rapamycin kinase complex 1 results in autophagy induction. Metabolite recycling induced by enhanced hepatic autophagy increases the efficiency of ammonia detoxification by furnishing key urea cycle intermediates and ATP, and stimulating ureagenesis. Moreover, autophagy enhancement by liver-directed gene transfer of the master regulator of autophagy TFEB (transcription factor EB) or treatments with the autophagy enhancers rapamycin and Tat-beclin 1 improve ammonia detoxification during hyperammonemia occurring as a consequence of either acquired or inherited diseases.
2018
Targeting autophagy for therapy of hyperammonemia / Soria, Leandro R.; Brunetti-Pierri, Nicola. - In: AUTOPHAGY. - ISSN 1554-8627. - 14:7(2018), pp. 1273-1275-1275. [10.1080/15548627.2018.1444312]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/720364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 12
social impact