High-precision 40Ar/39Ar ages, major and trace element, and radiogenic isotope data are presented for the basanites and alkali basalts forming the southwesternmost monogenetic volcanic field in Madagascar. The volcanic rocks were erupted along fissure zones and aligned cones in a nearly flat area covered by the Cenozoic sediments of the Morondava basin. The high-precision 40Ar/39Ar ages constrain the beginning of the magmatism in the Ankililoaka area to about 12 Ma, significantly earlier than suggested by previously published K/Ar ages. The Ankililoaka basanites include primitive compositions (MgO >10 wt%, Ni >200 ppm and Cr >400 ppm), whereas other basanites and alkali basalts experienced limited removal of olivine, chromiferous spinel and clinopyroxene. Initial Sr and Nd isotope ratios of the basanites are 0.70343–0.70445 and 0.51279–0.51282, respectively. The Pb isotope compositions are in the ranges 206Pb/204Pb = 19.08–19.38, 207Pb/204Pb = 15.61–15.64 and 208Pb/204Pb = 39.1–39.4. The alkali basalts have similar 87Sr/86Sr, 143Nd/144Nd and 207Pb/204Pb, but slightly lower 206Pb/204Pb and 208Pb/204Pb than the basanites. The isotopic composition of the Ankililoaka rocks partially overlaps with that of the Cenozoic volcanic mafic rocks of northern Madagascar, and differs significantly from that of the mafic volcanic rocks of central Madagascar, which have lower 206Pb/204Pb and 207Pb/204Pb, and higher 87Sr/86Sr. Major and trace element systematics and geochemical modelling suggest that the Ankililoaka mafic alkaline rocks are low-degree melts of an incompatible element enriched peridotite source starting from depths where garnet is stable. Crustal contamination during ascent was insignificant. We argue that the genesis of the Ankililoaka alkaline magmas was triggered by melting an enriched, volatile-rich lithospheric mantle uplifted in the Cenozoic.

The mafic alkaline volcanism of SW Madagascar (Ankililoaka, Tulear region):40AR/39AR ages, geochemistry and tectonic setting / Cucciniello, C.; Le Roex, A. P.; Jourdan, F.; Morra, V.; Grifa, C.; Franciosi, L.; Melluso, L.. - In: JOURNAL OF THE GEOLOGICAL SOCIETY. - ISSN 0016-7649. - 175:4(2018), pp. 627-641. [10.1144/jgs2017-139]

The mafic alkaline volcanism of SW Madagascar (Ankililoaka, Tulear region):40AR/39AR ages, geochemistry and tectonic setting

Cucciniello, C.
;
Morra, V.;Franciosi, L.;Melluso, L.
2018

Abstract

High-precision 40Ar/39Ar ages, major and trace element, and radiogenic isotope data are presented for the basanites and alkali basalts forming the southwesternmost monogenetic volcanic field in Madagascar. The volcanic rocks were erupted along fissure zones and aligned cones in a nearly flat area covered by the Cenozoic sediments of the Morondava basin. The high-precision 40Ar/39Ar ages constrain the beginning of the magmatism in the Ankililoaka area to about 12 Ma, significantly earlier than suggested by previously published K/Ar ages. The Ankililoaka basanites include primitive compositions (MgO >10 wt%, Ni >200 ppm and Cr >400 ppm), whereas other basanites and alkali basalts experienced limited removal of olivine, chromiferous spinel and clinopyroxene. Initial Sr and Nd isotope ratios of the basanites are 0.70343–0.70445 and 0.51279–0.51282, respectively. The Pb isotope compositions are in the ranges 206Pb/204Pb = 19.08–19.38, 207Pb/204Pb = 15.61–15.64 and 208Pb/204Pb = 39.1–39.4. The alkali basalts have similar 87Sr/86Sr, 143Nd/144Nd and 207Pb/204Pb, but slightly lower 206Pb/204Pb and 208Pb/204Pb than the basanites. The isotopic composition of the Ankililoaka rocks partially overlaps with that of the Cenozoic volcanic mafic rocks of northern Madagascar, and differs significantly from that of the mafic volcanic rocks of central Madagascar, which have lower 206Pb/204Pb and 207Pb/204Pb, and higher 87Sr/86Sr. Major and trace element systematics and geochemical modelling suggest that the Ankililoaka mafic alkaline rocks are low-degree melts of an incompatible element enriched peridotite source starting from depths where garnet is stable. Crustal contamination during ascent was insignificant. We argue that the genesis of the Ankililoaka alkaline magmas was triggered by melting an enriched, volatile-rich lithospheric mantle uplifted in the Cenozoic.
2018
The mafic alkaline volcanism of SW Madagascar (Ankililoaka, Tulear region):40AR/39AR ages, geochemistry and tectonic setting / Cucciniello, C.; Le Roex, A. P.; Jourdan, F.; Morra, V.; Grifa, C.; Franciosi, L.; Melluso, L.. - In: JOURNAL OF THE GEOLOGICAL SOCIETY. - ISSN 0016-7649. - 175:4(2018), pp. 627-641. [10.1144/jgs2017-139]
File in questo prodotto:
File Dimensione Formato  
jgs2017-139.pdf

Open Access dal 02/05/2019

Descrizione: bozza del lavoro non ancora accettata per la stampa. quindi di pubblico dominio.
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 8.51 MB
Formato Adobe PDF
8.51 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/719783
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 12
social impact