Fe(II)-mediated autotrophic denitrification in the presence of copper (Cu), nickel (Ni) and zinc (Zn) with four different microbial cultures was investigated in batch bioassays. In the absence of metals, complete nitrate removal and Fe(II) oxidation were achieved with a Thiobacillus-dominated mixed culture and Pseudogulbenkiania sp. 2002 after 7 d. A nitrate removal of 96 and 91% was observed with a pure culture of T. denitrificans and an activated sludge enrichment, respectively, after 10 d of incubation. Cu, Ni and Zn were then supplemented at an initial concentration of 5, 10, 20 and 40 mg Me/L. A decrease of approximately 50% of the soluble metal concentrations occurred in the first 4 d of denitrification, due to metal precipitation, co-precipitation, sorption onto iron (hydr)oxides, and probably sorption onto biomass. A higher sensitivity to metal toxicity was observed for the microbial pure cultures. Pseudogulbenkiania sp. 2002 was the least tolerant among the biomasses tested, resulting in only 6, 8 and 6% nitrate removal for the highest Cu, Ni and Zn concentrations, respectively. In contrast, the highest nitrate removal efficiency and specific rates were achieved with the Thiobacillus-dominated mixed culture, which better tolerated the presence of metals. Averagely, Cu resulted in the highest inhibition of nitrate removal, followed by Zn and Ni.

Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification / Kiskira, Kyriaki; Papirio, Stefano; Fourdrin, Chloé; van Hullebusch, Eric D.; Esposito, Giovanni. - In: JOURNAL OF ENVIRONMENTAL MANAGEMENT. - ISSN 0301-4797. - 218:(2018), pp. 209-219. [10.1016/j.jenvman.2018.04.050]

Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification

Stefano Papirio
Supervision
;
Giovanni Esposito
2018

Abstract

Fe(II)-mediated autotrophic denitrification in the presence of copper (Cu), nickel (Ni) and zinc (Zn) with four different microbial cultures was investigated in batch bioassays. In the absence of metals, complete nitrate removal and Fe(II) oxidation were achieved with a Thiobacillus-dominated mixed culture and Pseudogulbenkiania sp. 2002 after 7 d. A nitrate removal of 96 and 91% was observed with a pure culture of T. denitrificans and an activated sludge enrichment, respectively, after 10 d of incubation. Cu, Ni and Zn were then supplemented at an initial concentration of 5, 10, 20 and 40 mg Me/L. A decrease of approximately 50% of the soluble metal concentrations occurred in the first 4 d of denitrification, due to metal precipitation, co-precipitation, sorption onto iron (hydr)oxides, and probably sorption onto biomass. A higher sensitivity to metal toxicity was observed for the microbial pure cultures. Pseudogulbenkiania sp. 2002 was the least tolerant among the biomasses tested, resulting in only 6, 8 and 6% nitrate removal for the highest Cu, Ni and Zn concentrations, respectively. In contrast, the highest nitrate removal efficiency and specific rates were achieved with the Thiobacillus-dominated mixed culture, which better tolerated the presence of metals. Averagely, Cu resulted in the highest inhibition of nitrate removal, followed by Zn and Ni.
2018
Effect of Cu, Ni and Zn on Fe(II)-driven autotrophic denitrification / Kiskira, Kyriaki; Papirio, Stefano; Fourdrin, Chloé; van Hullebusch, Eric D.; Esposito, Giovanni. - In: JOURNAL OF ENVIRONMENTAL MANAGEMENT. - ISSN 0301-4797. - 218:(2018), pp. 209-219. [10.1016/j.jenvman.2018.04.050]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/717394
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact