EF-hand calcium sensors respond structurally to changes in intracellular Ca(2+) concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca(2+) binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy landscape of the protein was reconstructed. Our results emphasize that NCS1 has evolved a remarkable complex interdomain cooperativity and a fundamentally different folding mechanism compared to structurally related proteins.

Single-molecule folding mechanism of an EF-hand neuronal calcium sensor / Heidarsson, Pétur O; Otazo, Mariela R; Bellucci, Luca; Mossa, Alessandro; Imparato, Alberto; Paci, Emanuele; Corni, Stefano; Di Felice, Rosa; Kragelund, Birthe B; Cecconi, Ciro. - In: STRUCTURE. - ISSN 0969-2126. - 21:10(2013), pp. 1812-21-1821. [10.1016/j.str.2013.07.022]

Single-molecule folding mechanism of an EF-hand neuronal calcium sensor

IMPARATO, Alberto;
2013

Abstract

EF-hand calcium sensors respond structurally to changes in intracellular Ca(2+) concentration, triggering diverse cellular responses and resulting in broad interactomes. Despite impressive advances in decoding their structure-function relationships, the folding mechanism of neuronal calcium sensors is still elusive. We used single-molecule optical tweezers to study the folding mechanism of the human neuronal calcium sensor 1 (NCS1). Two intermediate structures induced by Ca(2+) binding to the EF-hands were observed during refolding. The complete folding of the C domain is obligatory for the folding of the N domain, showing striking interdomain dependence. Molecular dynamics results reveal the atomistic details of the unfolding process and rationalize the different domain stabilities during mechanical unfolding. Through constant-force experiments and hidden Markov model analysis, the free energy landscape of the protein was reconstructed. Our results emphasize that NCS1 has evolved a remarkable complex interdomain cooperativity and a fundamentally different folding mechanism compared to structurally related proteins.
2013
Single-molecule folding mechanism of an EF-hand neuronal calcium sensor / Heidarsson, Pétur O; Otazo, Mariela R; Bellucci, Luca; Mossa, Alessandro; Imparato, Alberto; Paci, Emanuele; Corni, Stefano; Di Felice, Rosa; Kragelund, Birthe B; Cecconi, Ciro. - In: STRUCTURE. - ISSN 0969-2126. - 21:10(2013), pp. 1812-21-1821. [10.1016/j.str.2013.07.022]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/715041
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 25
social impact