BACKGROUND: Iron deficiency anemia in celiac disease is related to impaired duodenal mucosal uptake, due to villous atrophy. Iron enters the enterocytes through an apical divalent metal transporter, DMT1. Different DMT1 transcripts have been identified, depending on the presence of an iron-responsive element that allows DMT1 up-regulation during iron starvation. An intronic DMT1 polymorphism, IVS4+44C>A, has been associated with metal toxicity, and the CC-carriers show high iron levels. AIMS: This study investigates the association between DMT1 IVS4+44C>A and anemia in a cohort of 387 Italian celiac children, and the functional role of the polymorphism. METHODS AND RESULTS: By association analysis, we found that DMT1 IVS4+44-AA genotype confers a four-fold risk of developing anemia, despite of atrophy degree. By analysis of mRNA from gastroesophageal biopsies, we found that total DMT1 is significantly upregulated in presence of mild, but not severe, atrophy, independently from IVS4+44C>A variant, and in normal but not in atrophic CC-biopsies. Moreover, we found that A-allele is associated to preferential expression of the DMT1 transcripts lacking the iron-responsive element, thus limiting the DMT1 overexpression that normally occurs to respond to iron starvation. DISCUSSION: Possibly, the IVS4+44-AA-related dysregulation of the iron-induced changes in DMT1 expression is not able to impair iron absorption in physiological condition. However, if exacerbated by the concomitant massive loss of functional absorbing tissue paralleling worsened stages of villus atrophy, it might be ineffective in counteracting iron deficiency, despite of DMT1 overexpression. CONCLUSION: We suggest, for the first time, that celiac disease may unmask the contribution of the DMT1 IVS4+44C>A polymorphism to the risk of anemia.

The DMT1 IVS4+44C>A polymorphism and the risk of iron deficiency anemia in children with celiac disease / Tolone, Carlo; Bellini, Giulia; Punzo, Francesca; Papparella, Alfonso; Miele, Erasmo; Vitale, Alessandra; Nobili, Bruno; Strisciuglio, Caterina; Rossi, Francesca. - In: PLOS ONE. - ISSN 1932-6203. - 12:10(2017), p. e0185822. [10.1371/journal.pone.0185822]

The DMT1 IVS4+44C>A polymorphism and the risk of iron deficiency anemia in children with celiac disease

Papparella, Alfonso;Miele, Erasmo;Vitale, Alessandra;Strisciuglio, Caterina;
2017

Abstract

BACKGROUND: Iron deficiency anemia in celiac disease is related to impaired duodenal mucosal uptake, due to villous atrophy. Iron enters the enterocytes through an apical divalent metal transporter, DMT1. Different DMT1 transcripts have been identified, depending on the presence of an iron-responsive element that allows DMT1 up-regulation during iron starvation. An intronic DMT1 polymorphism, IVS4+44C>A, has been associated with metal toxicity, and the CC-carriers show high iron levels. AIMS: This study investigates the association between DMT1 IVS4+44C>A and anemia in a cohort of 387 Italian celiac children, and the functional role of the polymorphism. METHODS AND RESULTS: By association analysis, we found that DMT1 IVS4+44-AA genotype confers a four-fold risk of developing anemia, despite of atrophy degree. By analysis of mRNA from gastroesophageal biopsies, we found that total DMT1 is significantly upregulated in presence of mild, but not severe, atrophy, independently from IVS4+44C>A variant, and in normal but not in atrophic CC-biopsies. Moreover, we found that A-allele is associated to preferential expression of the DMT1 transcripts lacking the iron-responsive element, thus limiting the DMT1 overexpression that normally occurs to respond to iron starvation. DISCUSSION: Possibly, the IVS4+44-AA-related dysregulation of the iron-induced changes in DMT1 expression is not able to impair iron absorption in physiological condition. However, if exacerbated by the concomitant massive loss of functional absorbing tissue paralleling worsened stages of villus atrophy, it might be ineffective in counteracting iron deficiency, despite of DMT1 overexpression. CONCLUSION: We suggest, for the first time, that celiac disease may unmask the contribution of the DMT1 IVS4+44C>A polymorphism to the risk of anemia.
2017
The DMT1 IVS4+44C>A polymorphism and the risk of iron deficiency anemia in children with celiac disease / Tolone, Carlo; Bellini, Giulia; Punzo, Francesca; Papparella, Alfonso; Miele, Erasmo; Vitale, Alessandra; Nobili, Bruno; Strisciuglio, Caterina; Rossi, Francesca. - In: PLOS ONE. - ISSN 1932-6203. - 12:10(2017), p. e0185822. [10.1371/journal.pone.0185822]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/710710
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 14
social impact