Background: The Hawking–Perry–Strominger (HPS) work states a new controversial idea about the black hole (BH) information paradox , where BHs maximally entropize and encode information in their event horizon area , with no “hair” thought to reveal information outside but angular momentum, mass, and electric charge only in a unique quantum gravity (QG) vacuum state. New conservation laws of gravitation and electromagnetism , appear to generate different QG vacua, preserving more information in soft photon/graviton hair implants. We find that BH photon hair implants can encode orbital angular momentum (OAM) and vorticity of the electromagnetic (EM) field. Methods: Numerical simulations are used to plot an EM field with OAM emitted by a set of dipolar currents together with the soft photon field they induce. The analytical results confirm that the soft photon hair implant carries OAM and vorticity. Results: a set of charges and currents generating real EM fields with precise values of OAM induce a “curly”, twisted, soft-hair implant on the BH with vorticity and OAM increased by one unit with respect to the initial real field. Conclusions: Soft photon implants can be spatially shaped ad hoc, encoding structured and densely organized information on the event horizon

Twisted soft photon hair implants on black holes / Tamburini, Fabrizio; De Laurentis, Mariafelicia; Licata, Ignazio; Thidé, Bo. - In: ENTROPY. - ISSN 1099-4300. - 19:9(2017), pp. 458-465. [10.3390/e19090458]

Twisted soft photon hair implants on black holes

De Laurentis, Mariafelicia;
2017

Abstract

Background: The Hawking–Perry–Strominger (HPS) work states a new controversial idea about the black hole (BH) information paradox , where BHs maximally entropize and encode information in their event horizon area , with no “hair” thought to reveal information outside but angular momentum, mass, and electric charge only in a unique quantum gravity (QG) vacuum state. New conservation laws of gravitation and electromagnetism , appear to generate different QG vacua, preserving more information in soft photon/graviton hair implants. We find that BH photon hair implants can encode orbital angular momentum (OAM) and vorticity of the electromagnetic (EM) field. Methods: Numerical simulations are used to plot an EM field with OAM emitted by a set of dipolar currents together with the soft photon field they induce. The analytical results confirm that the soft photon hair implant carries OAM and vorticity. Results: a set of charges and currents generating real EM fields with precise values of OAM induce a “curly”, twisted, soft-hair implant on the BH with vorticity and OAM increased by one unit with respect to the initial real field. Conclusions: Soft photon implants can be spatially shaped ad hoc, encoding structured and densely organized information on the event horizon
2017
Twisted soft photon hair implants on black holes / Tamburini, Fabrizio; De Laurentis, Mariafelicia; Licata, Ignazio; Thidé, Bo. - In: ENTROPY. - ISSN 1099-4300. - 19:9(2017), pp. 458-465. [10.3390/e19090458]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/707362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact