The pesticide mancozeb (mz) is recognized as a potent inducer of oxidative stress due to its ability to catalyze the production of reactive oxygen species plus inhibiting mitochondrial respiration thus becoming an environmental risk for neurodegenerative diseases. Despite numerous toxicological studies on mz have been directed to mammals, attention on marine fish is still lacking. Thus, it was our intention to evaluate neurobehavioral activities of ornate wrasses (Thalassoma pavo) exposed to 0.2mg/l of mz after a preliminary screening test (0.07-0.3mg/l). Treated fish exhibited an evident (p<0.001) latency to reach T-maze arms (>1000%) while exploratory attitudes (total arm entries) diminished (-50%; p<0.05) versus controls during spontaneous exploration tests. Moreover, they showed evident enhancements (+111%) of immobility in the cylinder test. Contextually, strong (-88%; p<0.01) reductions of permanence in light zone of the Light/Dark apparatus along with diminished crossings (-65%) were also detected. Conversely, wrasses displayed evident enhancements (160%) of risk assessment consisting of fast entries in the dark side of this apparatus. From a molecular point of view, a notable activation (p<0.005) of the brain transcription factor pCREB occurred during mz-exposure. Similarly, in situ hybridization supplied increased HSP90 mRNAs in most brain areas such as the lateral part of the dorsal telencephalon (Dl; +68%) and valvula of the cerebellum (VCe; +35%) that also revealed evident argyrophilic signals. Overall, these first indications suggest a possible protective role of the early biomarkers pCREB and HSP90 against fish toxicity

HSP90 and pCREB alterations are linked to mancozeb-dependent behavioral and neurodegenerative effects in a marine teleost

Di Lorenzo, Mariana;Laforgia, Vincenza;
2017

Abstract

The pesticide mancozeb (mz) is recognized as a potent inducer of oxidative stress due to its ability to catalyze the production of reactive oxygen species plus inhibiting mitochondrial respiration thus becoming an environmental risk for neurodegenerative diseases. Despite numerous toxicological studies on mz have been directed to mammals, attention on marine fish is still lacking. Thus, it was our intention to evaluate neurobehavioral activities of ornate wrasses (Thalassoma pavo) exposed to 0.2mg/l of mz after a preliminary screening test (0.07-0.3mg/l). Treated fish exhibited an evident (p<0.001) latency to reach T-maze arms (>1000%) while exploratory attitudes (total arm entries) diminished (-50%; p<0.05) versus controls during spontaneous exploration tests. Moreover, they showed evident enhancements (+111%) of immobility in the cylinder test. Contextually, strong (-88%; p<0.01) reductions of permanence in light zone of the Light/Dark apparatus along with diminished crossings (-65%) were also detected. Conversely, wrasses displayed evident enhancements (160%) of risk assessment consisting of fast entries in the dark side of this apparatus. From a molecular point of view, a notable activation (p<0.005) of the brain transcription factor pCREB occurred during mz-exposure. Similarly, in situ hybridization supplied increased HSP90 mRNAs in most brain areas such as the lateral part of the dorsal telencephalon (Dl; +68%) and valvula of the cerebellum (VCe; +35%) that also revealed evident argyrophilic signals. Overall, these first indications suggest a possible protective role of the early biomarkers pCREB and HSP90 against fish toxicity
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0041008X17301229-main.pdf

accesso aperto

Descrizione: pdf
Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/705764
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact