Susceptibility Weighted Imaging (SWI) is a common MRI technique that exploits the magnetic susceptibility differences between the tissues to provide valuable image contrasts, both in research and clinical contexts. However, despite its increased clinical use, SWI is not intrinsically suitable for quantitation purposes. Conversely, quantitative Magnetic Resonance Imaging (qMRI) provides a way to disentangle the sources of common MR image contrasts (e.g. proton density, T1, etc.) and to measure physical parameters intrinsically related to tissue microstructure. Unfortunately, the poor signal-to-noise ratio and resolution, coupled with the long imaging time of most qMRI strategies, have hindered the integration of quantitative imaging into clinical protocols. Here we present the RElaxometry and SUsceptibility Mapping Expedient (RESUME) to show that the standard acquisition leading to a clinical SWI dataset can be easily turned into a thorough qMRI protocol at the cost of a further 50% of the SWI scan time. The R1, R2, proton density and magnetic susceptibility maps provided by the RESUME scheme alongside the SWI reconstruction exhibit high reproducibility and accuracy, and a submillimeter resolution is proven to be compatible with a total scan time of 7 minutes.
RESUME: Turning an SWI acquisition into a fast qMRI protocol / Monti, Serena; Borrelli, Pasquale; Tedeschi, Enrico; Cocozza, Sirio; Palma, Giuseppe. - In: PLOS ONE. - ISSN 1932-6203. - 12:12(2017), p. e0189933. [10.1371/journal.pone.0189933]
RESUME: Turning an SWI acquisition into a fast qMRI protocol
Borrelli, Pasquale;Tedeschi, EnricoWriting – Review & Editing
;Cocozza, Sirio;
2017
Abstract
Susceptibility Weighted Imaging (SWI) is a common MRI technique that exploits the magnetic susceptibility differences between the tissues to provide valuable image contrasts, both in research and clinical contexts. However, despite its increased clinical use, SWI is not intrinsically suitable for quantitation purposes. Conversely, quantitative Magnetic Resonance Imaging (qMRI) provides a way to disentangle the sources of common MR image contrasts (e.g. proton density, T1, etc.) and to measure physical parameters intrinsically related to tissue microstructure. Unfortunately, the poor signal-to-noise ratio and resolution, coupled with the long imaging time of most qMRI strategies, have hindered the integration of quantitative imaging into clinical protocols. Here we present the RElaxometry and SUsceptibility Mapping Expedient (RESUME) to show that the standard acquisition leading to a clinical SWI dataset can be easily turned into a thorough qMRI protocol at the cost of a further 50% of the SWI scan time. The R1, R2, proton density and magnetic susceptibility maps provided by the RESUME scheme alongside the SWI reconstruction exhibit high reproducibility and accuracy, and a submillimeter resolution is proven to be compatible with a total scan time of 7 minutes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.