Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status.

Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes / Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; Castellino, P.. - In: BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR BASIS OF DISEASE. - ISSN 0925-4439. - 1822:5(2012), pp. 729-736. [10.1016/j.bbadis.2011.12.003]

Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes

Leso, V.;
2012

Abstract

Oxidative stress has been suggested to play a main role in the pathogenesis of type 2 diabetes mellitus and its complications. As a consequence of this increased oxidative status a cellular adaptive response occurs requiring functional chaperones, antioxidant production and protein degradation. This study was designed to evaluate systemic oxidative stress and cellular stress response in patients suffering from type 2 diabetes and in age-matched healthy subjects. Systemic oxidative stress has been evaluated by measuring plasma reduced and oxidized glutathione, as well as pentosidine, protein carbonyls lipid oxidation products 4-hydroxy-2-nonenal and F2-isoprostanes in plasma, and lymphocytes, whereas the lymphocyte levels of the heat shock proteins (HSP) HO-1, Hsp72, Sirtuin-1, Sirtuin-2 and thioredoxin reductase-1 (TrxR-1) have been measured to evaluate the systemic cellular stress response. Plasma GSH/GSSG showed a significant decrease in type 2 diabetes as compared to control group, associated with increased pentosidine, F2-isoprostanes, carbonyls and HNE levels. In addition, lymphocyte levels of HO-1, Hsp70, Trx and TrxR-1 (P<0.05 and P<0.01) in diabetic patients were higher than in normal subjects, while sirtuin-1 and sirtuin-2 protein was significantly decreased (p<0.05). In conclusion, patients affected by type 2 diabetes are under condition of systemic oxidative stress and, although the relevance of downregulation in sirtuin signal has to be fully understood, however induction of HSPs and thioredoxin protein system represent a maintained response in counteracting systemic pro-oxidant status.
2012
Oxidative stress, glutathione status, sirtuin and cellular stress response in type 2 diabetes / Calabrese, V.; Cornelius, C.; Leso, V.; Trovato-Salinaro, A.; Ventimiglia, B.; Cavallaro, M.; Scuto, M.; Rizza, S.; Zanoli, L.; Neri, S.; Castellino, P.. - In: BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR BASIS OF DISEASE. - ISSN 0925-4439. - 1822:5(2012), pp. 729-736. [10.1016/j.bbadis.2011.12.003]
File in questo prodotto:
File Dimensione Formato  
Calabrese et al., 2012.pdf

non disponibili

Licenza: Accesso privato/ristretto
Dimensione 720.88 kB
Formato Adobe PDF
720.88 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/703362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 148
  • ???jsp.display-item.citation.isi??? 138
social impact