Current in vitro models of human intestine commonly fail to mimic the complex intestinal functions and features required for drug development and disease research. Here, we deeply investigate the interaction existing between epithelium and the underneath stroma, and its role in the epithelium morphogenesis. We cultured human intestinal subepithelial myofibroblasts (ISEMFs) in two different 3D configurations: 3D-collagen gel equivalent (3D-CGE) and 3D cell-synthetized stromal equivalent (3D-CSSE). The 3D-CGEs were obtained by means of the traditional collagen-based cell technique and the 3D-CSSE were obtained by bottom-up tissue engineering strategy. The biophysical properties of both 3D models with regard to cell growth and composition (via histological analysis, immunofluorescence, and multiphoton imaging) were assessed. Then, human colorectal adenocarcinoma cell line (CaCo-2) was cultured on both the 3D constructs in order to produce the intestinal model. We identified higher levels of matrix-associated proteins from ISEMFs cultured in 3D-CSSE compared to 3D-CGE. Furthermore, multiphoton investigation revealed differences in the collagen network architecture in both models. At last, the more physiologically relevant stromal environment of the 3D-CSSE drove the CaCo-2 cell differentiation toward the four different type of intestinal epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) phenotype and promotes, in contrast to the 3D-CGE, the production of the basement membrane. Taken together, these results highlight a fundamental role of the 3D stromal environment in addressing a correct epithelium morphogenesis as well as epithelial-stromal interface establishment.

3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro / DE GREGORIO, Vincenza; Imparato, Giorgia; Urciuolo, Francesco; Netti, Paolo A.. - In: BIOTECHNOLOGY AND BIOENGINEERING. - ISSN 0006-3592. - 115:4(2018), pp. 1062-1075. [10.1002/bit.26522]

3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro

DE GREGORIO, VINCENZA
Primo
Writing – Review & Editing
;
Imparato, Giorgia
;
Urciuolo, Francesco;Netti, Paolo A.
Ultimo
2018

Abstract

Current in vitro models of human intestine commonly fail to mimic the complex intestinal functions and features required for drug development and disease research. Here, we deeply investigate the interaction existing between epithelium and the underneath stroma, and its role in the epithelium morphogenesis. We cultured human intestinal subepithelial myofibroblasts (ISEMFs) in two different 3D configurations: 3D-collagen gel equivalent (3D-CGE) and 3D cell-synthetized stromal equivalent (3D-CSSE). The 3D-CGEs were obtained by means of the traditional collagen-based cell technique and the 3D-CSSE were obtained by bottom-up tissue engineering strategy. The biophysical properties of both 3D models with regard to cell growth and composition (via histological analysis, immunofluorescence, and multiphoton imaging) were assessed. Then, human colorectal adenocarcinoma cell line (CaCo-2) was cultured on both the 3D constructs in order to produce the intestinal model. We identified higher levels of matrix-associated proteins from ISEMFs cultured in 3D-CSSE compared to 3D-CGE. Furthermore, multiphoton investigation revealed differences in the collagen network architecture in both models. At last, the more physiologically relevant stromal environment of the 3D-CSSE drove the CaCo-2 cell differentiation toward the four different type of intestinal epithelial cells (absorptive, mucus-secretory, enteroendocrine, and Paneth) phenotype and promotes, in contrast to the 3D-CGE, the production of the basement membrane. Taken together, these results highlight a fundamental role of the 3D stromal environment in addressing a correct epithelium morphogenesis as well as epithelial-stromal interface establishment.
2018
3D stromal tissue equivalent affects intestinal epithelium morphogenesis in vitro / DE GREGORIO, Vincenza; Imparato, Giorgia; Urciuolo, Francesco; Netti, Paolo A.. - In: BIOTECHNOLOGY AND BIOENGINEERING. - ISSN 0006-3592. - 115:4(2018), pp. 1062-1075. [10.1002/bit.26522]
File in questo prodotto:
File Dimensione Formato  
7. 3D stromal tissue equivalent affects intestinal epithelium.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 3.61 MB
Formato Adobe PDF
3.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/702863
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact