This work addresses the experimental and numerical study of a stepped planing hull and the related fluid dynamics phenomena typically occurring in the stepped hull in the unwetted aft body area behind the step. In the last few years, the interest in high-speed planing crafts, with low weight-to-power ratios, has been increasing significantly, and, in such context, naval architects have been orienting toward the stepped hull solution. Stepped planing hulls ensure good dynamic stability and seakeeping qualities at high speeds. This is mainly due to the reduction of the wetted area, which is caused by the flow separation occurring at the step. This paper presents the experimental results of towing tank tests in calm water on a single-step hull model, which is the first model of a new systematic series. The same flow conditions are analyzed via Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES), with different moving mesh techniques (overset/chimera and morphing grid), performed at different model speeds. The numerical results are in accordance with experimental data, and overset/chimera grid is found to be the best approach between the analyzed ones. The flow patterns obtained numerically through LES on a refined grid appear similar to the ones observed in towing tank investigations through photographic acquisitions. These flow patterns are dominated by a rather complex 3D arrangement of vortices originating from air spillage at both sides of the step. The understanding of these phenomena is important for the effectiveness of stepped hull designs.

Experimental and numerical hydrodynamic analysis of a stepped planing hull / De Marco, Agostino; Mancini, Simone; Miranda, Salvatore; Scognamiglio, Raffaele; Vitiello, Luigi. - In: APPLIED OCEAN RESEARCH. - ISSN 0141-1187. - 64:(2017), pp. 135-154. [10.1016/j.apor.2017.02.004]

Experimental and numerical hydrodynamic analysis of a stepped planing hull

De Marco, Agostino
;
Mancini, Simone;Miranda, Salvatore;Vitiello, Luigi
2017

Abstract

This work addresses the experimental and numerical study of a stepped planing hull and the related fluid dynamics phenomena typically occurring in the stepped hull in the unwetted aft body area behind the step. In the last few years, the interest in high-speed planing crafts, with low weight-to-power ratios, has been increasing significantly, and, in such context, naval architects have been orienting toward the stepped hull solution. Stepped planing hulls ensure good dynamic stability and seakeeping qualities at high speeds. This is mainly due to the reduction of the wetted area, which is caused by the flow separation occurring at the step. This paper presents the experimental results of towing tank tests in calm water on a single-step hull model, which is the first model of a new systematic series. The same flow conditions are analyzed via Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulations (LES), with different moving mesh techniques (overset/chimera and morphing grid), performed at different model speeds. The numerical results are in accordance with experimental data, and overset/chimera grid is found to be the best approach between the analyzed ones. The flow patterns obtained numerically through LES on a refined grid appear similar to the ones observed in towing tank investigations through photographic acquisitions. These flow patterns are dominated by a rather complex 3D arrangement of vortices originating from air spillage at both sides of the step. The understanding of these phenomena is important for the effectiveness of stepped hull designs.
2017
Experimental and numerical hydrodynamic analysis of a stepped planing hull / De Marco, Agostino; Mancini, Simone; Miranda, Salvatore; Scognamiglio, Raffaele; Vitiello, Luigi. - In: APPLIED OCEAN RESEARCH. - ISSN 0141-1187. - 64:(2017), pp. 135-154. [10.1016/j.apor.2017.02.004]
File in questo prodotto:
File Dimensione Formato  
APOR_DeMarco_Vitiello_etc_Stepped-Hull_2017_10.1016@j.apor.2017.02.004.pdf

accesso aperto

Descrizione: Articolo in post-print
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 5.05 MB
Formato Adobe PDF
5.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/702596
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 133
  • ???jsp.display-item.citation.isi??? 105
social impact