BACKGROUND AND PURPOSE: Hydrogen sulfide (H2 S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2 S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2 S availability. EXPERIMENTAL APPROACH: HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. KEY RESULTS: Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2 S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2 S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP ) channels, the molecular target that mediates part of the vascular functions of H2 S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2 S response to H2 S and KATP activation. CONCLUSIONS AND IMPLICATIONS: Zofenoprilat induced a constant production of H2 S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2 S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced.

Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2 S availability / Terzuoli, E; Monti, M; Vellecco, V; Bucci, M; Cirino, G; Ziche, M; Morbidelli, Massimo. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 1476-5381. - 172:12(2015), pp. 2961-2973. [10.1111/bph.13101]

Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2 S availability.

Vellecco V;Bucci M;Cirino G;MORBIDELLI, MASSIMO
2015

Abstract

BACKGROUND AND PURPOSE: Hydrogen sulfide (H2 S), an endogenous volatile mediator with pleiotropic functions, promotes vasorelaxation, exerts anti-inflammatory actions and regulates angiogenesis. Previously, the SH-containing angiotensin-converting enzyme inhibitor (ACEI), zofenopril, was identified as being effective in preserving endothelial function and inducing angiogenesis among ACEIs. Based on the H2 S donor property of its active metabolite zofenoprilat, the objective of this study was to evaluate whether zofenoprilat-induced angiogenesis was due to increased H2 S availability. EXPERIMENTAL APPROACH: HUVECs were used for in vitro studies of angiogenesis, whereas the Matrigel plug assay was used for in vivo assessments. KEY RESULTS: Zofenoprilat-treated HUVECs showed an increase in all functional features of the angiogenic process in vitro. As zofenoprilat induced the expression of CSE (cystathionine-γ-lyase) and the continuous production of H2 S, CSE inhibition or silencing blocked the ability of zofenoprilat to induce angiogenesis, both in vitro and in vivo. The molecular mechanisms underlying H2 S/zofenoprilat-induced angiogenesis were dependent on Akt, eNOS and ERK1/2 cascades. ATP-sensitive potassium (KATP ) channels, the molecular target that mediates part of the vascular functions of H2 S, were shown to be involved in the upstream activation of Akt and ERK1/2. Moreover, the up-regulation of fibroblast growth factor-2 was dependent on CSE-derived H2 S response to H2 S and KATP activation. CONCLUSIONS AND IMPLICATIONS: Zofenoprilat induced a constant production of H2 S that stimulated the angiogenic process through a KATP channel/Akt/eNOS/ERK1/2 pathway. Thus, zofenopril can be considered as a pro-angiogenic drug acting through H2 S release and production, useful in cardiovascular pathologies where vascular functions need to be re-established and functional angiogenesis induced.
2015
Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2 S availability / Terzuoli, E; Monti, M; Vellecco, V; Bucci, M; Cirino, G; Ziche, M; Morbidelli, Massimo. - In: BRITISH JOURNAL OF PHARMACOLOGY. - ISSN 1476-5381. - 172:12(2015), pp. 2961-2973. [10.1111/bph.13101]
File in questo prodotto:
File Dimensione Formato  
Terzuoli_et_al-2015-British_Journal_of_Pharmacology.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Dominio pubblico
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/698533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 31
social impact