The compound Cp(2)TiMe(2) reacts with [Ph(3)C][B(C(6)F(5))(4)] in CD(2)Cl(2) at 205 K to give, inter alia, [Cp(2)TiMe(CD(2)Cl(2))][B(C(6)F(5))(4)]. This solvent-separated ion pair reacts in turn with 2,4-dimethyl-1-pentene (DMP) to give a series of cationic species, the first being the alkene complex [Cp(2)TiMe(DMP)](+), which undergoes ready migratory insertion to form the σ-alkyl complex [Cp(2)Ti(CH(2)CMe(2)CH(2)CHMe(2))](+). The latter, which does not contain a β-hydrogen atom, rearranges rapidly via an unprecedented 1,5-σ bond metathesis reaction involving two isomeric ε-agostic species to give the σ-alkyl species [Cp(2)Ti(CH(2)CHMeCH(2)CMe(3))](+); this does contain a β-hydrogen atom and, in concurrent processes, eliminates H(2) or 2,4,4-trimethyl-1-pentene (a major product) to form respectively the allylic complex [Cp(2)Tiη(3)-(CH(2))(2)CCH(2)CMe(3)](+) (a major product) or the hydride complex [Cp(2)TiH](+). The latter reacts reversibly with free DMP to give the insertion product [Cp(2)Ti(CH(2)CHMeCH(2)CHMe(2))](+) (V, a major product), in which the italicized hydrogen atom engages in a β-agostic interaction with the metal atom. Compound V is a rare example of both a β-agostic derivative of a group 4 metallocene and a β-agostic compound of any metal in which the (1)H resonance of the agostic hydrogen can be identified in the (1)H NMR spectrum (δ -3.43). Interestingly, a NOESY experiment on V indicates slow mutual exchange between the agostic hydrogen atom, the hydrogen atoms on C(1), and those of Me(2). These observations are consistent with the intermediacy of the allylic dihydrogen species [Cp(2)Ti(H(2))η(3)-(CH(2))(2)CCH(2)CHMe(2)](+), which loses H(2) to form [Cp(2)Tiη(3)-(CH(2))(2)CCH(2)CHMe(2)](+) (a minor product). Support for all steps of the proposed reaction scheme comes from product distributions, from labeling studies utilizing [Cp(2)Ti(CD(3))(CD(2)Cl(2))](+), and from extensive DFT calculations. The observed titanocene-based chemistry stands in stark contrast to that of the analogous zirconium system, in which the unusual but well-characterized cationic methyl alkene complex [Cp(2)ZrMe(DMP)](+) does not undergo migratory insertion and subsequent reactions.

Remarkable reactions and intermediates in titanocene(IV) chemistry: migratory insertion reactions of 2,2-disubstituted-1-alkenes, intramolecular 1,5-σ bond metathesis via ε-agostic interactions, and a rare example of a β-agostic alkyltitanocene complex / Sauriol, Francoise; Sonnenberg, Jessica F; Chadder, Sarah J; Dunlop Brière, Alexandre F; Baird, Michael C; Budzelaar, Petrus Henricus Maria. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - 132:38(2010), pp. 13357-70-13370. [10.1021/ja104526v]

Remarkable reactions and intermediates in titanocene(IV) chemistry: migratory insertion reactions of 2,2-disubstituted-1-alkenes, intramolecular 1,5-σ bond metathesis via ε-agostic interactions, and a rare example of a β-agostic alkyltitanocene complex

BUDZELAAR, Petrus Henricus Maria
2010

Abstract

The compound Cp(2)TiMe(2) reacts with [Ph(3)C][B(C(6)F(5))(4)] in CD(2)Cl(2) at 205 K to give, inter alia, [Cp(2)TiMe(CD(2)Cl(2))][B(C(6)F(5))(4)]. This solvent-separated ion pair reacts in turn with 2,4-dimethyl-1-pentene (DMP) to give a series of cationic species, the first being the alkene complex [Cp(2)TiMe(DMP)](+), which undergoes ready migratory insertion to form the σ-alkyl complex [Cp(2)Ti(CH(2)CMe(2)CH(2)CHMe(2))](+). The latter, which does not contain a β-hydrogen atom, rearranges rapidly via an unprecedented 1,5-σ bond metathesis reaction involving two isomeric ε-agostic species to give the σ-alkyl species [Cp(2)Ti(CH(2)CHMeCH(2)CMe(3))](+); this does contain a β-hydrogen atom and, in concurrent processes, eliminates H(2) or 2,4,4-trimethyl-1-pentene (a major product) to form respectively the allylic complex [Cp(2)Tiη(3)-(CH(2))(2)CCH(2)CMe(3)](+) (a major product) or the hydride complex [Cp(2)TiH](+). The latter reacts reversibly with free DMP to give the insertion product [Cp(2)Ti(CH(2)CHMeCH(2)CHMe(2))](+) (V, a major product), in which the italicized hydrogen atom engages in a β-agostic interaction with the metal atom. Compound V is a rare example of both a β-agostic derivative of a group 4 metallocene and a β-agostic compound of any metal in which the (1)H resonance of the agostic hydrogen can be identified in the (1)H NMR spectrum (δ -3.43). Interestingly, a NOESY experiment on V indicates slow mutual exchange between the agostic hydrogen atom, the hydrogen atoms on C(1), and those of Me(2). These observations are consistent with the intermediacy of the allylic dihydrogen species [Cp(2)Ti(H(2))η(3)-(CH(2))(2)CCH(2)CHMe(2)](+), which loses H(2) to form [Cp(2)Tiη(3)-(CH(2))(2)CCH(2)CHMe(2)](+) (a minor product). Support for all steps of the proposed reaction scheme comes from product distributions, from labeling studies utilizing [Cp(2)Ti(CD(3))(CD(2)Cl(2))](+), and from extensive DFT calculations. The observed titanocene-based chemistry stands in stark contrast to that of the analogous zirconium system, in which the unusual but well-characterized cationic methyl alkene complex [Cp(2)ZrMe(DMP)](+) does not undergo migratory insertion and subsequent reactions.
2010
Remarkable reactions and intermediates in titanocene(IV) chemistry: migratory insertion reactions of 2,2-disubstituted-1-alkenes, intramolecular 1,5-σ bond metathesis via ε-agostic interactions, and a rare example of a β-agostic alkyltitanocene complex / Sauriol, Francoise; Sonnenberg, Jessica F; Chadder, Sarah J; Dunlop Brière, Alexandre F; Baird, Michael C; Budzelaar, Petrus Henricus Maria. - In: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY. - ISSN 0002-7863. - 132:38(2010), pp. 13357-70-13370. [10.1021/ja104526v]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/683184
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact