For centuries the promontory of Capo Colonna in Calabria region, southern Italy, experienced land subsidence and coastline retreat to an extent that the archaeological ruins of the ancient Greek sanctuary are currently under threat of cliff failure, toppling and irreversible loss. Gas extraction in nearby wells is a further anthropogenic element to account for at the regional scale. Exploiting an unprecedented satellite Synthetic Aperture Radar (SAR) time series including ERS-1/2, ENVISAT, TerraSAR-X, COSMO-SkyMed and Sentinel-1A data stacks acquired between 1992 and 2016, this paper presents the first and most complete Interferometric SAR (InSAR) baseline assessment of land subsidence and coastal processes affecting Capo Colonna. We analyse the regional displacement trends, the correlation between vertical displacements with gas extraction volumes, the impact on stability of the archaeological heritage, and the coastal geohazard susceptibility. In the last 25 years, the land has subsided uninterruptedly, with highest annual line-of-sight deformation rates ranging between -15 and -20 mm/year in 2011-2014. The installation of 40 pairs of corner reflectors along the northern coastline and within the archaeological park resulted in an improved imaging capability and higher density of measurement points. This proved to be beneficial for the ground stability assessment of recent archaeological excavations, in an area where field surveying in November 2015 highlighted new events of cliff failure. The conceptual model developed suggests that combining InSAR results, geomorphological assessments and inventorying of wavestorms will contribute to unveil the complexity of coastal geohazards in Capo Colonna.

25 years of satellite InSAR monitoring of ground instability and coastal geohazards in the archaeological site of Capo Colonna, Italy

CONFUORTO, PIERLUIGI;DI MARTIRE, DIEGO;RAMONDINI, MASSIMO;CALCATERRA, DOMENICO;
2016

Abstract

For centuries the promontory of Capo Colonna in Calabria region, southern Italy, experienced land subsidence and coastline retreat to an extent that the archaeological ruins of the ancient Greek sanctuary are currently under threat of cliff failure, toppling and irreversible loss. Gas extraction in nearby wells is a further anthropogenic element to account for at the regional scale. Exploiting an unprecedented satellite Synthetic Aperture Radar (SAR) time series including ERS-1/2, ENVISAT, TerraSAR-X, COSMO-SkyMed and Sentinel-1A data stacks acquired between 1992 and 2016, this paper presents the first and most complete Interferometric SAR (InSAR) baseline assessment of land subsidence and coastal processes affecting Capo Colonna. We analyse the regional displacement trends, the correlation between vertical displacements with gas extraction volumes, the impact on stability of the archaeological heritage, and the coastal geohazard susceptibility. In the last 25 years, the land has subsided uninterruptedly, with highest annual line-of-sight deformation rates ranging between -15 and -20 mm/year in 2011-2014. The installation of 40 pairs of corner reflectors along the northern coastline and within the archaeological park resulted in an improved imaging capability and higher density of measurement points. This proved to be beneficial for the ground stability assessment of recent archaeological excavations, in an area where field surveying in November 2015 highlighted new events of cliff failure. The conceptual model developed suggests that combining InSAR results, geomorphological assessments and inventorying of wavestorms will contribute to unveil the complexity of coastal geohazards in Capo Colonna.
File in questo prodotto:
File Dimensione Formato  
SPIE_2016.pdf

solo utenti autorizzati

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Accesso privato/ristretto
Dimensione 3.84 MB
Formato Adobe PDF
3.84 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/671208
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 6
social impact