The paper deals with the study of the Cauchy-Dirichlet problem for the class of hyperbolic second order operators with double characteristics in the presence of transition $P = D_{x_0}^{2} - D_{x_1}^{2} - (x_0 + lambda - alpha(x_1)^2 D_{x_2}^{2}$. Energy estimates and existence and uniqueness results are established.

The Cauchy-Dirichlet problem for a class of hyperbolic operators with double characteristics in the presence of transition

BARBAGALLO, ANNAMARIA;ESPOSITO, VINCENZO
2016

Abstract

The paper deals with the study of the Cauchy-Dirichlet problem for the class of hyperbolic second order operators with double characteristics in the presence of transition $P = D_{x_0}^{2} - D_{x_1}^{2} - (x_0 + lambda - alpha(x_1)^2 D_{x_2}^{2}$. Energy estimates and existence and uniqueness results are established.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11588/659386
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact